Fourier Spectral Method for a Class of Nonlinear Schrödinger Models

In this paper, Fourier spectral method combined with modified fourth order exponential time-differencing Runge-Kutta is proposed to solve the nonlinear Schrödinger equation with a source term. The Fourier spectral method is applied to approximate the spatial direction, and fourth order exponential t...

Full description

Saved in:
Bibliographic Details
Main Authors: Lei Zhang, Weihua Ou Yang, Xuan Liu, Haidong Qu
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2021/9934858
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, Fourier spectral method combined with modified fourth order exponential time-differencing Runge-Kutta is proposed to solve the nonlinear Schrödinger equation with a source term. The Fourier spectral method is applied to approximate the spatial direction, and fourth order exponential time-differencing Runge-Kutta method is used to discrete temporal direction. The proof of the conservation law of the mass and the energy for the semidiscrete and full-discrete Fourier spectral scheme is given. The error of the semidiscrete Fourier spectral scheme is analyzed in the proper Sobolev space. Finally, several numerical examples are presented to support our analysis.
ISSN:1687-9120
1687-9139