Commercial Hoverboard Reverse Engineering and Repurposing for a Stabilized Platform: A Recyclable Solution for Modular Robotic Bases

Sustainability and resource optimization have spurred interest in giving a second life to used equipment, often discarded after limited use. Within this framework, we conducted a multidisciplinary, final-year engineering project to explore the reverse engineering and repurposing of commercial hoverb...

Full description

Saved in:
Bibliographic Details
Main Authors: Antoine Leblanc, Lùka Tricot, Duncan Briquet, Mohamed Aziz Slama, Christophe Delebarre
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/12/3833
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sustainability and resource optimization have spurred interest in giving a second life to used equipment, often discarded after limited use. Within this framework, we conducted a multidisciplinary, final-year engineering project to explore the reverse engineering and repurposing of commercial hoverboards for an auto-stabilizing, modular robotic platform, with emphasis on medical applications such as transporting medication. The innovation lies in recycling hoverboards to develop a teleoperated, stabilized base that can accommodate additional modules—for instance, a multifunctional arm or a transport shelf—akin to existing commercial robots. Our methodology involves disassembling and reprogramming the hoverboard’s motor controllers and sensors to maintain horizontal stability. Control is realized through the sensor fusion of accelerometer and gyroscope data, processed by a Kalman filter and implemented in a Proportional-Integral-Derivative (PID) loop. A user-friendly Human-Machine Interface (HMI), hosted on an ESP32 microcontroller, enables remote operation and monitoring. Experimental results show that the platform autonomously balances, carries payloads, and achieves high energy efficiency, highlighting its potential as a sustainable and versatile solution in modular robotic applications.
ISSN:1424-8220