Periodic Averaging Principle for Neutral Stochastic Delay Differential Equations with Impulses
In this paper, we study the periodic averaging principle for neutral stochastic delay differential equations with impulses under non-Lipschitz condition. By using the linear operator theory, we deal with the difficulty brought by delay term of the neutral system and obtain the conclusion that the so...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/6731091 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we study the periodic averaging principle for neutral stochastic delay differential equations with impulses under non-Lipschitz condition. By using the linear operator theory, we deal with the difficulty brought by delay term of the neutral system and obtain the conclusion that the solutions of neutral stochastic delay differential equations with impulses converge to the solutions of the corresponding averaged stochastic delay differential equations without impulses in the sense of mean square and in probability. At last, an example is presented to show the validity of the proposed theories. |
---|---|
ISSN: | 1076-2787 1099-0526 |