The Depolarization Performances of the Polarized Light in Different Scattering Media Systems
In this paper, with the aids of the Monte Carlo simulations, we have investigated the depolarization performances of circularly polarized light (CPL) and linearly polarized light (LPL) transmitted in homogeneous scattering media systems. The depolarization performances depend on the number density,...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2018-01-01
|
| Series: | IEEE Photonics Journal |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/8115149/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850093081217466368 |
|---|---|
| author | Fei Shen Bianmei Zhang Kai Guo Zhiping Yin Zhongyi Guo |
| author_facet | Fei Shen Bianmei Zhang Kai Guo Zhiping Yin Zhongyi Guo |
| author_sort | Fei Shen |
| collection | DOAJ |
| description | In this paper, with the aids of the Monte Carlo simulations, we have investigated the depolarization performances of circularly polarized light (CPL) and linearly polarized light (LPL) transmitted in homogeneous scattering media systems. The depolarization performances depend on the number density, refractive index, and the concrete size distributions of scattering particles. Here, we mainly investigate the mixed ratio and distribution effect of scattering particles on the depolarization performances of CPL and LPL, respectively. The simulation results show that there exist larger mismatches in the depolarization performances between monodisperse and polydisperse scattering systems, and with increasing small particles’ proportion the degree of linear polarization decreases slightly, but the degree of circular polarization decreases drastically. When the size distribution of scattering particles obey the logarithmic normal distribution, the simulated results show that the propagation behavior of the incident light in a polydisperse medium system with standard deviation of <inline-formula><tex-math notation="LaTeX">$\sigma = \text{0.1}\ \mu{\rm {m}}$</tex-math></inline-formula> can be modeled very well by the corresponding monodisperse medium system with the mean value, however, the approximation will fail for a scattering medium with larger standard deviation of <inline-formula><tex-math notation="LaTeX">$\sigma = \text{0.5}\ \mu{\rm {m}}$</tex-math></inline-formula> . These results demonstrated that the depolarization behavior of light was sensitive to the mixed ratio or the distribution state of particles, which was significant to the polarization engineering, such as polarization imaging and polarization based communications. |
| format | Article |
| id | doaj-art-4b773368c434455ca89c3a34745ba833 |
| institution | DOAJ |
| issn | 1943-0655 |
| language | English |
| publishDate | 2018-01-01 |
| publisher | IEEE |
| record_format | Article |
| series | IEEE Photonics Journal |
| spelling | doaj-art-4b773368c434455ca89c3a34745ba8332025-08-20T02:42:00ZengIEEEIEEE Photonics Journal1943-06552018-01-0110211210.1109/JPHOT.2017.27734768115149The Depolarization Performances of the Polarized Light in Different Scattering Media SystemsFei Shen0Bianmei Zhang1Kai Guo2Zhiping Yin3Zhongyi Guo4https://orcid.org/0000-0001-7282-2503School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, ChinaSchool of Computer Science and Information Engineering, Hefei University of Technology, Hefei, ChinaSchool of Computer Science and Information Engineering, Hefei University of Technology, Hefei, ChinaSchool of Computer Science and Information Engineering, Hefei University of Technology, Hefei, ChinaSchool of Computer Science and Information Engineering, Hefei University of Technology, Hefei, ChinaIn this paper, with the aids of the Monte Carlo simulations, we have investigated the depolarization performances of circularly polarized light (CPL) and linearly polarized light (LPL) transmitted in homogeneous scattering media systems. The depolarization performances depend on the number density, refractive index, and the concrete size distributions of scattering particles. Here, we mainly investigate the mixed ratio and distribution effect of scattering particles on the depolarization performances of CPL and LPL, respectively. The simulation results show that there exist larger mismatches in the depolarization performances between monodisperse and polydisperse scattering systems, and with increasing small particles’ proportion the degree of linear polarization decreases slightly, but the degree of circular polarization decreases drastically. When the size distribution of scattering particles obey the logarithmic normal distribution, the simulated results show that the propagation behavior of the incident light in a polydisperse medium system with standard deviation of <inline-formula><tex-math notation="LaTeX">$\sigma = \text{0.1}\ \mu{\rm {m}}$</tex-math></inline-formula> can be modeled very well by the corresponding monodisperse medium system with the mean value, however, the approximation will fail for a scattering medium with larger standard deviation of <inline-formula><tex-math notation="LaTeX">$\sigma = \text{0.5}\ \mu{\rm {m}}$</tex-math></inline-formula> . These results demonstrated that the depolarization behavior of light was sensitive to the mixed ratio or the distribution state of particles, which was significant to the polarization engineering, such as polarization imaging and polarization based communications.https://ieeexplore.ieee.org/document/8115149/Light propagation in tissuesPolarizationMultiple scatteringTurbid media. |
| spellingShingle | Fei Shen Bianmei Zhang Kai Guo Zhiping Yin Zhongyi Guo The Depolarization Performances of the Polarized Light in Different Scattering Media Systems IEEE Photonics Journal Light propagation in tissues Polarization Multiple scattering Turbid media. |
| title | The Depolarization Performances of the Polarized Light in Different Scattering Media Systems |
| title_full | The Depolarization Performances of the Polarized Light in Different Scattering Media Systems |
| title_fullStr | The Depolarization Performances of the Polarized Light in Different Scattering Media Systems |
| title_full_unstemmed | The Depolarization Performances of the Polarized Light in Different Scattering Media Systems |
| title_short | The Depolarization Performances of the Polarized Light in Different Scattering Media Systems |
| title_sort | depolarization performances of the polarized light in different scattering media systems |
| topic | Light propagation in tissues Polarization Multiple scattering Turbid media. |
| url | https://ieeexplore.ieee.org/document/8115149/ |
| work_keys_str_mv | AT feishen thedepolarizationperformancesofthepolarizedlightindifferentscatteringmediasystems AT bianmeizhang thedepolarizationperformancesofthepolarizedlightindifferentscatteringmediasystems AT kaiguo thedepolarizationperformancesofthepolarizedlightindifferentscatteringmediasystems AT zhipingyin thedepolarizationperformancesofthepolarizedlightindifferentscatteringmediasystems AT zhongyiguo thedepolarizationperformancesofthepolarizedlightindifferentscatteringmediasystems AT feishen depolarizationperformancesofthepolarizedlightindifferentscatteringmediasystems AT bianmeizhang depolarizationperformancesofthepolarizedlightindifferentscatteringmediasystems AT kaiguo depolarizationperformancesofthepolarizedlightindifferentscatteringmediasystems AT zhipingyin depolarizationperformancesofthepolarizedlightindifferentscatteringmediasystems AT zhongyiguo depolarizationperformancesofthepolarizedlightindifferentscatteringmediasystems |