Properties of Matrix Variate Confluent Hypergeometric Function Distribution
We study matrix variate confluent hypergeometric function kind 1 distribution which is a generalization of the matrix variate gamma distribution. We give several properties of this distribution. We also derive density functions of X2-1/2X1X2-1/2, (X1+X2)-1/2X1(X1+X2)-1/2, and X1+X2, where m×m indepe...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | Journal of Probability and Statistics |
Online Access: | http://dx.doi.org/10.1155/2016/2374907 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832559896489361408 |
---|---|
author | Arjun K. Gupta Daya K. Nagar Luz Estela Sánchez |
author_facet | Arjun K. Gupta Daya K. Nagar Luz Estela Sánchez |
author_sort | Arjun K. Gupta |
collection | DOAJ |
description | We study matrix variate confluent hypergeometric function kind 1 distribution which is a generalization of the matrix variate gamma distribution. We give several properties of this distribution. We also derive density functions of X2-1/2X1X2-1/2, (X1+X2)-1/2X1(X1+X2)-1/2, and X1+X2, where m×m independent random matrices X1 and X2 follow confluent hypergeometric function kind 1 and gamma distributions, respectively. |
format | Article |
id | doaj-art-4b07cea719f34d63b7a9c20a806d37ea |
institution | Kabale University |
issn | 1687-952X 1687-9538 |
language | English |
publishDate | 2016-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Probability and Statistics |
spelling | doaj-art-4b07cea719f34d63b7a9c20a806d37ea2025-02-03T01:28:59ZengWileyJournal of Probability and Statistics1687-952X1687-95382016-01-01201610.1155/2016/23749072374907Properties of Matrix Variate Confluent Hypergeometric Function DistributionArjun K. Gupta0Daya K. Nagar1Luz Estela Sánchez2Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403-0221, USAInstituto de Matemáticas, Universidad de Antioquia, Calle 67, No. 53–108, Medellín, ColombiaInstituto de Matemáticas, Universidad de Antioquia, Calle 67, No. 53–108, Medellín, ColombiaWe study matrix variate confluent hypergeometric function kind 1 distribution which is a generalization of the matrix variate gamma distribution. We give several properties of this distribution. We also derive density functions of X2-1/2X1X2-1/2, (X1+X2)-1/2X1(X1+X2)-1/2, and X1+X2, where m×m independent random matrices X1 and X2 follow confluent hypergeometric function kind 1 and gamma distributions, respectively.http://dx.doi.org/10.1155/2016/2374907 |
spellingShingle | Arjun K. Gupta Daya K. Nagar Luz Estela Sánchez Properties of Matrix Variate Confluent Hypergeometric Function Distribution Journal of Probability and Statistics |
title | Properties of Matrix Variate Confluent Hypergeometric Function Distribution |
title_full | Properties of Matrix Variate Confluent Hypergeometric Function Distribution |
title_fullStr | Properties of Matrix Variate Confluent Hypergeometric Function Distribution |
title_full_unstemmed | Properties of Matrix Variate Confluent Hypergeometric Function Distribution |
title_short | Properties of Matrix Variate Confluent Hypergeometric Function Distribution |
title_sort | properties of matrix variate confluent hypergeometric function distribution |
url | http://dx.doi.org/10.1155/2016/2374907 |
work_keys_str_mv | AT arjunkgupta propertiesofmatrixvariateconfluenthypergeometricfunctiondistribution AT dayaknagar propertiesofmatrixvariateconfluenthypergeometricfunctiondistribution AT luzestelasanchez propertiesofmatrixvariateconfluenthypergeometricfunctiondistribution |