Sign changes of the partial sums of a random multiplicative function II

We study two models of random multiplicative functions: Rademacher random multiplicative functions supported on the squarefree integers $f$, and Rademacher random completely multiplicative functions $f^*$. We prove that the partial sums $\sum _{n\le x}f^*(n)$ and $\sum _{n\le x}\frac{f(n)}{\sqrt{n}}...

Full description

Saved in:
Bibliographic Details
Main Author: Aymone, Marco
Format: Article
Language:English
Published: Académie des sciences 2024-10-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.615/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206147016032256
author Aymone, Marco
author_facet Aymone, Marco
author_sort Aymone, Marco
collection DOAJ
description We study two models of random multiplicative functions: Rademacher random multiplicative functions supported on the squarefree integers $f$, and Rademacher random completely multiplicative functions $f^*$. We prove that the partial sums $\sum _{n\le x}f^*(n)$ and $\sum _{n\le x}\frac{f(n)}{\sqrt{n}}$ change sign infinitely often as $x\rightarrow \infty $, almost surely. The case $\sum _{n\le x}\frac{f^*(n)}{\sqrt{n}}$ is left as an open question and we stress the possibility of only a finite number of sign changes, with positive probability.
format Article
id doaj-art-4acf36015ba643ab9399e17e85d44d49
institution Kabale University
issn 1778-3569
language English
publishDate 2024-10-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-4acf36015ba643ab9399e17e85d44d492025-02-07T11:22:49ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-10-01362G889590110.5802/crmath.61510.5802/crmath.615Sign changes of the partial sums of a random multiplicative function IIAymone, Marco0Departamento de Matemática, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, BrazilWe study two models of random multiplicative functions: Rademacher random multiplicative functions supported on the squarefree integers $f$, and Rademacher random completely multiplicative functions $f^*$. We prove that the partial sums $\sum _{n\le x}f^*(n)$ and $\sum _{n\le x}\frac{f(n)}{\sqrt{n}}$ change sign infinitely often as $x\rightarrow \infty $, almost surely. The case $\sum _{n\le x}\frac{f^*(n)}{\sqrt{n}}$ is left as an open question and we stress the possibility of only a finite number of sign changes, with positive probability.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.615/Random multiplicative functionsOscillation theorems
spellingShingle Aymone, Marco
Sign changes of the partial sums of a random multiplicative function II
Comptes Rendus. Mathématique
Random multiplicative functions
Oscillation theorems
title Sign changes of the partial sums of a random multiplicative function II
title_full Sign changes of the partial sums of a random multiplicative function II
title_fullStr Sign changes of the partial sums of a random multiplicative function II
title_full_unstemmed Sign changes of the partial sums of a random multiplicative function II
title_short Sign changes of the partial sums of a random multiplicative function II
title_sort sign changes of the partial sums of a random multiplicative function ii
topic Random multiplicative functions
Oscillation theorems
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.615/
work_keys_str_mv AT aymonemarco signchangesofthepartialsumsofarandommultiplicativefunctionii