Characterization of Finsler Space with Rander’s-Type Exponential-Form Metric

This study explores a unique Finsler space with a Rander’s-type exponential metric, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">G</mi><mrow><mo&g...

Full description

Saved in:
Bibliographic Details
Main Authors: Vinit Kumar Chaubey, Brijesh Kumar Tripathi, Sudhakar Kumar Chaubey, Meraj Ali Khan
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/7/1063
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850184664645369856
author Vinit Kumar Chaubey
Brijesh Kumar Tripathi
Sudhakar Kumar Chaubey
Meraj Ali Khan
author_facet Vinit Kumar Chaubey
Brijesh Kumar Tripathi
Sudhakar Kumar Chaubey
Meraj Ali Khan
author_sort Vinit Kumar Chaubey
collection DOAJ
description This study explores a unique Finsler space with a Rander’s-type exponential metric, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">G</mi><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>)</mo></mrow><msup><mi>e</mi><mstyle scriptlevel="0" displaystyle="true"><mfrac><mi>β</mi><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>)</mo></mrow></mfrac></mstyle></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> is a Riemannian metric and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> is a 1-form. We analyze the conditions under which its hypersurfaces behave like hyperplanes of the first, second, and third kinds. Additionally, we examine the reducibility of the Cartan tensor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">C</mi></semantics></math></inline-formula> for these hypersurfaces, providing insights into their geometric structure.
format Article
id doaj-art-4abbbede78f347a58edc454cf53fe5d0
institution OA Journals
issn 2227-7390
language English
publishDate 2025-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-4abbbede78f347a58edc454cf53fe5d02025-08-20T02:17:00ZengMDPI AGMathematics2227-73902025-03-01137106310.3390/math13071063Characterization of Finsler Space with Rander’s-Type Exponential-Form MetricVinit Kumar Chaubey0Brijesh Kumar Tripathi1Sudhakar Kumar Chaubey2Meraj Ali Khan3Department of Mathematics, North-Eastern Hill University, Shillong 793022, IndiaDepartment of Mathematics, L. D. College of Engineering, Navrangpura, Ahmedabad 380015, IndiaSection of Mathematics, IT Department, University of Technology and Applied Sciences, P.O. Box 77, Shinas 324, OmanDepartment of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 65892, Riyadh 11566, Saudi ArabiaThis study explores a unique Finsler space with a Rander’s-type exponential metric, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">G</mi><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>)</mo></mrow><msup><mi>e</mi><mstyle scriptlevel="0" displaystyle="true"><mfrac><mi>β</mi><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>)</mo></mrow></mfrac></mstyle></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> is a Riemannian metric and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> is a 1-form. We analyze the conditions under which its hypersurfaces behave like hyperplanes of the first, second, and third kinds. Additionally, we examine the reducibility of the Cartan tensor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">C</mi></semantics></math></inline-formula> for these hypersurfaces, providing insights into their geometric structure.https://www.mdpi.com/2227-7390/13/7/1063Finslerian hypersurfaceexponential (<i>α</i>, <i>β</i>)-metricCartan connectionhyperplane of first, second, and third kind
spellingShingle Vinit Kumar Chaubey
Brijesh Kumar Tripathi
Sudhakar Kumar Chaubey
Meraj Ali Khan
Characterization of Finsler Space with Rander’s-Type Exponential-Form Metric
Mathematics
Finslerian hypersurface
exponential (<i>α</i>, <i>β</i>)-metric
Cartan connection
hyperplane of first, second, and third kind
title Characterization of Finsler Space with Rander’s-Type Exponential-Form Metric
title_full Characterization of Finsler Space with Rander’s-Type Exponential-Form Metric
title_fullStr Characterization of Finsler Space with Rander’s-Type Exponential-Form Metric
title_full_unstemmed Characterization of Finsler Space with Rander’s-Type Exponential-Form Metric
title_short Characterization of Finsler Space with Rander’s-Type Exponential-Form Metric
title_sort characterization of finsler space with rander s type exponential form metric
topic Finslerian hypersurface
exponential (<i>α</i>, <i>β</i>)-metric
Cartan connection
hyperplane of first, second, and third kind
url https://www.mdpi.com/2227-7390/13/7/1063
work_keys_str_mv AT vinitkumarchaubey characterizationoffinslerspacewithranderstypeexponentialformmetric
AT brijeshkumartripathi characterizationoffinslerspacewithranderstypeexponentialformmetric
AT sudhakarkumarchaubey characterizationoffinslerspacewithranderstypeexponentialformmetric
AT merajalikhan characterizationoffinslerspacewithranderstypeexponentialformmetric