Comparative Analysis of Linear and Nonlinear Pattern Synthesis of Hemispherical Antenna Array Using Adaptive Evolutionary Techniques

Hemispherical antenna arrays are subjected to linear and nonlinear synthesis and are optimized using adaptive based differential evolution (ADE) and fire fly (AFA) algorithm. The hemispherical shaped array with isotropic elements is considered. Antenna element parameters that are used for synthesis...

Full description

Saved in:
Bibliographic Details
Main Authors: K. R. Subhashini, A. T. Praveen Kumar
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2014/987140
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hemispherical antenna arrays are subjected to linear and nonlinear synthesis and are optimized using adaptive based differential evolution (ADE) and fire fly (AFA) algorithm. The hemispherical shaped array with isotropic elements is considered. Antenna element parameters that are used for synthesis are excitation amplitude and angular position. Linear synthesis is termed as the variation in the element excitation amplitude and nonlinear synthesis is process of variation in element angular position. Both ADE and AFA are a high-performance stochastic evolutionary algorithm used to solve N-dimensional problems. These methods are used to determine a set of parameters of antenna elements that provide the desired radiation pattern. The effectiveness of the algorithms for the design of conformal antenna array is shown by means of numerical results. Comparison with other methods is made whenever possible. The results reveal that nonlinear synthesis, aided by the discussed techniques, provides considerable enhancements compared to linear synthesis.
ISSN:1687-5869
1687-5877