Numerical Simulations on the Protection of the Molten Salt Thermal Tube under Cloud Occlusion

Based on the single tube model of the receiver, the temperature drop characteristics of the endothermic tube such as the heat flux, molten salt flow rate and surface convection heat transfer coefficient were studied through numerical simulations on the scenarios under cloud occlusion before and afte...

Full description

Saved in:
Bibliographic Details
Main Authors: Lei FENG, Gang XIAO, Lei GUO, Chenggang YANG, Haiyan LIAO
Format: Article
Language:zho
Published: State Grid Energy Research Institute 2020-11-01
Series:Zhongguo dianli
Subjects:
Online Access:https://www.electricpower.com.cn/CN/10.11930/j.issn.1004-9649.201903071
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on the single tube model of the receiver, the temperature drop characteristics of the endothermic tube such as the heat flux, molten salt flow rate and surface convection heat transfer coefficient were studied through numerical simulations on the scenarios under cloud occlusion before and after protection schemes implemented. The results exhibit limited impacts of radiation heat flux density on the elapsed time for temperature at the molten salt outlet to decrease to close to the solidification point. Moreover, the greater the convection heat transfer coefficient, the more likely the molten salt solidification may appear; while the lower the molten salt inlet velocity, the longer time it will take for the molten salt outlet temperature to drop close to the solidification point. Without the protective device, the time taken to reach the freezing temperature of the molten salt at the outlet is about 20 seconds. The scheme of adding the protective device and reducing the inlet velocity of molten salt can be applied to extend the time by almost six times, or as much as 130 seconds. Thereby system security can be greatly improved.
ISSN:1004-9649