Analysis of Biomolecular Changes in HeLa Cervical Cancer Cell Line Induced by Interaction with [Pd(dach)Cl<sub>2</sub>]

Transition metal complexes have been used in medicine for several decades, but their intracellular effects are not yet fully elucidated. Therefore, in this study, we investigate biomolecular changes induced by a palladium(II) complex in cervical carcinoma (HeLa) cells as a model to study the subtle...

Full description

Saved in:
Bibliographic Details
Main Authors: Vanja Ralić, Maja D. Nešić, Tanja Dučić, Milutin Stepić, Lela Korićanac, Katarina Davalieva, Marijana Petković
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Inorganics
Subjects:
Online Access:https://www.mdpi.com/2304-6740/13/1/20
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transition metal complexes have been used in medicine for several decades, but their intracellular effects are not yet fully elucidated. Therefore, in this study, we investigate biomolecular changes induced by a palladium(II) complex in cervical carcinoma (HeLa) cells as a model to study the subtle changes caused by transition metal ions ingested by the cells. The impact of dichloro(1,2-diaminocyclohexane)palladium(II), [Pd(dach)Cl<sub>2</sub>], was studied by synchrotron radiation-based Fourier transform infrared (SR FTIR) spectroscopy, a powerful tool for studying alterations in cellular components’ biochemical composition and biomolecular secondary structure on a single-cell level. A spectral analysis, complemented by statistics, revealed that the Pd(II) complex considerably affected all major types of macromolecules in HeLa cells and induced structural changes in proteins through an increased formation of cross-β-sheets and causes structural rearrangement in deoxyribonucleic acid (DNA) through potential chromosome fragmentation. Although a certain level of lipid peroxidation was detectable by SR FTIR spectroscopy and confirmed by an analysis of cellular lipids by matrix-assisted laser desorption and ionisation time-of-flight mass spectrometry, the oxidative stress is not a significant mechanism by which Pd(II) expresses the effect on the HeLa cells.
ISSN:2304-6740