Probing Anisotropic Quasiparticle Dynamics and Topological Phase Transitions in Quasi‐1D Topological Insulator ZrTe5

Abstract The transition metal pentatelluride ZrTe5 exhibits rich lattice‐sensitive topological electronic states, and demonstrates great potential in photoelectric and thermoelectric devices. However, a comprehensive investigation of electron‐phonon coupling and phonon scattering process remains lim...

Full description

Saved in:
Bibliographic Details
Main Authors: Yueying Hou, Linze Li, Sutao Sun, Gan Liu, Hongyuan Zhao, Zhiheng Chen, Xuejun Yan, Yang‐Yang Lv, Yurong Yang, Shu‐Hua Yao, Jian Zhou, Y.B. Chen, Ming‐Hui Lu, Vitalyi Gusev, Yan‐Feng Chen
Format: Article
Language:English
Published: Wiley 2025-08-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202504798
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849227286940745728
author Yueying Hou
Linze Li
Sutao Sun
Gan Liu
Hongyuan Zhao
Zhiheng Chen
Xuejun Yan
Yang‐Yang Lv
Yurong Yang
Shu‐Hua Yao
Jian Zhou
Y.B. Chen
Ming‐Hui Lu
Vitalyi Gusev
Yan‐Feng Chen
author_facet Yueying Hou
Linze Li
Sutao Sun
Gan Liu
Hongyuan Zhao
Zhiheng Chen
Xuejun Yan
Yang‐Yang Lv
Yurong Yang
Shu‐Hua Yao
Jian Zhou
Y.B. Chen
Ming‐Hui Lu
Vitalyi Gusev
Yan‐Feng Chen
author_sort Yueying Hou
collection DOAJ
description Abstract The transition metal pentatelluride ZrTe5 exhibits rich lattice‐sensitive topological electronic states, and demonstrates great potential in photoelectric and thermoelectric devices. However, a comprehensive investigation of electron‐phonon coupling and phonon scattering process remains limited, despite their importance for transport properties and device optimization. Here, the hot carrier dynamics and a 1.15 THz Ag mode coherent phonon in ZrTe5 are investigated by femtosecond transient spectroscopy across 10–300 K. Notably, polarization‐dependent measurements explicitly decouple a strong anisotropic transient response, which is attributed to the effects of excited‐state electron relaxation and reflectivity modulation by displacive excited coherent phonons. The temperature dependence of electron relaxation time in ZrTe5 shows an inflection point, first offering the ultrafast dynamical signature of a temperature‐driven Lifshitz transition. At low temperatures, a long‐lived electron relaxation component emerges in the transient response, providing possible evidence of topological surface states in ZrTe5. In addition, the temperature‐dependent coherent phonon is also analyzed, revealing that its scattering is dominated by three‐phonon interactions and exhibits a relatively long lifetime compared to other modes. This work deepens the understanding of ultrafast processes in ZrTe5, resolves longstanding questions, paves the way for studying electronic phase transitions, and advances ZrTe5's application in optoelectronic and quantum devices.
format Article
id doaj-art-4a57d17eef44434c922e8eba9ffa22e3
institution Kabale University
issn 2198-3844
language English
publishDate 2025-08-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj-art-4a57d17eef44434c922e8eba9ffa22e32025-08-23T14:14:08ZengWileyAdvanced Science2198-38442025-08-011231n/an/a10.1002/advs.202504798Probing Anisotropic Quasiparticle Dynamics and Topological Phase Transitions in Quasi‐1D Topological Insulator ZrTe5Yueying Hou0Linze Li1Sutao Sun2Gan Liu3Hongyuan Zhao4Zhiheng Chen5Xuejun Yan6Yang‐Yang Lv7Yurong Yang8Shu‐Hua Yao9Jian Zhou10Y.B. Chen11Ming‐Hui Lu12Vitalyi Gusev13Yan‐Feng Chen14National Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaNational Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaNational Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaNational Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaNational Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaNational Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaNational Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaNational Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaNational Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaNational Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaNational Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaNational Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaNational Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaLaboratoire d'Acoustique de l'Universite du Mans (LAUM), UMR 6613, Institut d'Acoustigue ‐ Graduate School (A‐GS).CNRS Le Mans Université Le Mans FranceNational Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 ChinaAbstract The transition metal pentatelluride ZrTe5 exhibits rich lattice‐sensitive topological electronic states, and demonstrates great potential in photoelectric and thermoelectric devices. However, a comprehensive investigation of electron‐phonon coupling and phonon scattering process remains limited, despite their importance for transport properties and device optimization. Here, the hot carrier dynamics and a 1.15 THz Ag mode coherent phonon in ZrTe5 are investigated by femtosecond transient spectroscopy across 10–300 K. Notably, polarization‐dependent measurements explicitly decouple a strong anisotropic transient response, which is attributed to the effects of excited‐state electron relaxation and reflectivity modulation by displacive excited coherent phonons. The temperature dependence of electron relaxation time in ZrTe5 shows an inflection point, first offering the ultrafast dynamical signature of a temperature‐driven Lifshitz transition. At low temperatures, a long‐lived electron relaxation component emerges in the transient response, providing possible evidence of topological surface states in ZrTe5. In addition, the temperature‐dependent coherent phonon is also analyzed, revealing that its scattering is dominated by three‐phonon interactions and exhibits a relatively long lifetime compared to other modes. This work deepens the understanding of ultrafast processes in ZrTe5, resolves longstanding questions, paves the way for studying electronic phase transitions, and advances ZrTe5's application in optoelectronic and quantum devices.https://doi.org/10.1002/advs.202504798anisotropic polarizaion dependencequasipartical dynamicstopological insulatortopological phase transitionzirconium pentelluride
spellingShingle Yueying Hou
Linze Li
Sutao Sun
Gan Liu
Hongyuan Zhao
Zhiheng Chen
Xuejun Yan
Yang‐Yang Lv
Yurong Yang
Shu‐Hua Yao
Jian Zhou
Y.B. Chen
Ming‐Hui Lu
Vitalyi Gusev
Yan‐Feng Chen
Probing Anisotropic Quasiparticle Dynamics and Topological Phase Transitions in Quasi‐1D Topological Insulator ZrTe5
Advanced Science
anisotropic polarizaion dependence
quasipartical dynamics
topological insulator
topological phase transition
zirconium pentelluride
title Probing Anisotropic Quasiparticle Dynamics and Topological Phase Transitions in Quasi‐1D Topological Insulator ZrTe5
title_full Probing Anisotropic Quasiparticle Dynamics and Topological Phase Transitions in Quasi‐1D Topological Insulator ZrTe5
title_fullStr Probing Anisotropic Quasiparticle Dynamics and Topological Phase Transitions in Quasi‐1D Topological Insulator ZrTe5
title_full_unstemmed Probing Anisotropic Quasiparticle Dynamics and Topological Phase Transitions in Quasi‐1D Topological Insulator ZrTe5
title_short Probing Anisotropic Quasiparticle Dynamics and Topological Phase Transitions in Quasi‐1D Topological Insulator ZrTe5
title_sort probing anisotropic quasiparticle dynamics and topological phase transitions in quasi 1d topological insulator zrte5
topic anisotropic polarizaion dependence
quasipartical dynamics
topological insulator
topological phase transition
zirconium pentelluride
url https://doi.org/10.1002/advs.202504798
work_keys_str_mv AT yueyinghou probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT linzeli probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT sutaosun probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT ganliu probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT hongyuanzhao probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT zhihengchen probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT xuejunyan probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT yangyanglv probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT yurongyang probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT shuhuayao probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT jianzhou probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT ybchen probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT minghuilu probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT vitalyigusev probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5
AT yanfengchen probinganisotropicquasiparticledynamicsandtopologicalphasetransitionsinquasi1dtopologicalinsulatorzrte5