Extremal Results on <i>ℓ</i>-Connected Graphs or Pancyclic Graphs Based on Wiener-Type Indices

A graph of order <i>n</i> is called pancyclic if it contains a cycle of length <i>y</i> for every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>≤&l...

Full description

Saved in:
Bibliographic Details
Main Authors: Jing Zeng, Hechao Liu, Lihua You
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/1/10
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549135531999232
author Jing Zeng
Hechao Liu
Lihua You
author_facet Jing Zeng
Hechao Liu
Lihua You
author_sort Jing Zeng
collection DOAJ
description A graph of order <i>n</i> is called pancyclic if it contains a cycle of length <i>y</i> for every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mi>n</mi></mrow></semantics></math></inline-formula>. The connectivity of an incomplete graph <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>κ</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo movablelimits="true" form="prefix">min</mo><mo>{</mo><mo>|</mo><mi>W</mi><mo>|</mo><mo>|</mo><mi>W</mi><mspace width="4pt"></mspace><mi>i</mi><mi>s</mi><mspace width="4pt"></mspace><mi>a</mi><mspace width="4pt"></mspace><mi>v</mi><mi>e</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>x</mi><mspace width="4pt"></mspace><mi>c</mi><mi>u</mi><mi>t</mi><mspace width="4pt"></mspace><mi>o</mi><mi>f</mi><mspace width="4pt"></mspace><mi>G</mi><mo>}</mo></mrow></semantics></math></inline-formula>. A graph <i>G</i> is said to be <i>ℓ</i>-connected if the connectivity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>κ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mo>ℓ</mo></mrow></semantics></math></inline-formula>. The Wiener-type indices of a connected graph <i>G</i> are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mi>g</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mstyle displaystyle="true"><munder><mo>∑</mo><mrow><mo>{</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>}</mo><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></munder></mstyle><mi>g</mi><mrow><mo>(</mo><msub><mi>d</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a function and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the distance in <i>G</i> between <i>s</i> and <i>t</i>. In this note, we first determine the minimum and maximum values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mi>g</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for <i>ℓ</i>-connected graphs. Then, we use the Wiener-type indices of graph <i>G</i>, the Wiener-type indices of complement graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>G</mi><mo>¯</mo></mover></semantics></math></inline-formula> with minimum degree <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>3</mn></mrow></semantics></math></inline-formula> to give some sufficient conditions for connected graphs to be pancyclic. Our results generalize some existing results of several papers.
format Article
id doaj-art-4a4afa9c4d174428b6f885d468cf1c90
institution Kabale University
issn 2227-7390
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-4a4afa9c4d174428b6f885d468cf1c902025-01-10T13:17:57ZengMDPI AGMathematics2227-73902024-12-011311010.3390/math13010010Extremal Results on <i>ℓ</i>-Connected Graphs or Pancyclic Graphs Based on Wiener-Type IndicesJing Zeng0Hechao Liu1Lihua You2School of Mathematical Sciences, South China Normal University, Guangzhou 510631, ChinaSchool of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, ChinaSchool of Mathematical Sciences, South China Normal University, Guangzhou 510631, ChinaA graph of order <i>n</i> is called pancyclic if it contains a cycle of length <i>y</i> for every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mi>n</mi></mrow></semantics></math></inline-formula>. The connectivity of an incomplete graph <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>κ</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo movablelimits="true" form="prefix">min</mo><mo>{</mo><mo>|</mo><mi>W</mi><mo>|</mo><mo>|</mo><mi>W</mi><mspace width="4pt"></mspace><mi>i</mi><mi>s</mi><mspace width="4pt"></mspace><mi>a</mi><mspace width="4pt"></mspace><mi>v</mi><mi>e</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>x</mi><mspace width="4pt"></mspace><mi>c</mi><mi>u</mi><mi>t</mi><mspace width="4pt"></mspace><mi>o</mi><mi>f</mi><mspace width="4pt"></mspace><mi>G</mi><mo>}</mo></mrow></semantics></math></inline-formula>. A graph <i>G</i> is said to be <i>ℓ</i>-connected if the connectivity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>κ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mo>ℓ</mo></mrow></semantics></math></inline-formula>. The Wiener-type indices of a connected graph <i>G</i> are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mi>g</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mstyle displaystyle="true"><munder><mo>∑</mo><mrow><mo>{</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>}</mo><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></munder></mstyle><mi>g</mi><mrow><mo>(</mo><msub><mi>d</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a function and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the distance in <i>G</i> between <i>s</i> and <i>t</i>. In this note, we first determine the minimum and maximum values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mi>g</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for <i>ℓ</i>-connected graphs. Then, we use the Wiener-type indices of graph <i>G</i>, the Wiener-type indices of complement graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>G</mi><mo>¯</mo></mover></semantics></math></inline-formula> with minimum degree <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>3</mn></mrow></semantics></math></inline-formula> to give some sufficient conditions for connected graphs to be pancyclic. Our results generalize some existing results of several papers.https://www.mdpi.com/2227-7390/13/1/10ℓ-connected graphpancyclic graphWiener-type indexsufficient condition
spellingShingle Jing Zeng
Hechao Liu
Lihua You
Extremal Results on <i>ℓ</i>-Connected Graphs or Pancyclic Graphs Based on Wiener-Type Indices
Mathematics
ℓ-connected graph
pancyclic graph
Wiener-type index
sufficient condition
title Extremal Results on <i>ℓ</i>-Connected Graphs or Pancyclic Graphs Based on Wiener-Type Indices
title_full Extremal Results on <i>ℓ</i>-Connected Graphs or Pancyclic Graphs Based on Wiener-Type Indices
title_fullStr Extremal Results on <i>ℓ</i>-Connected Graphs or Pancyclic Graphs Based on Wiener-Type Indices
title_full_unstemmed Extremal Results on <i>ℓ</i>-Connected Graphs or Pancyclic Graphs Based on Wiener-Type Indices
title_short Extremal Results on <i>ℓ</i>-Connected Graphs or Pancyclic Graphs Based on Wiener-Type Indices
title_sort extremal results on i l i connected graphs or pancyclic graphs based on wiener type indices
topic ℓ-connected graph
pancyclic graph
Wiener-type index
sufficient condition
url https://www.mdpi.com/2227-7390/13/1/10
work_keys_str_mv AT jingzeng extremalresultsoniliconnectedgraphsorpancyclicgraphsbasedonwienertypeindices
AT hechaoliu extremalresultsoniliconnectedgraphsorpancyclicgraphsbasedonwienertypeindices
AT lihuayou extremalresultsoniliconnectedgraphsorpancyclicgraphsbasedonwienertypeindices