The Sensitivity Analysis of a Lake Ecosystem with the Conditional Nonlinear Optimal Perturbation Method

The instability and sensitivity of a lake ecosystem to the finite-amplitude perturbations related to the initial condition and the parameter correspondingly are studied. The CNOP-I and CNOP-P methods are adopted to investigate this nonlinear system. The numerical results with CNOP-I method show that...

Full description

Saved in:
Bibliographic Details
Main Authors: Bo Wang, Peijun Zhang, Zhenhua Huo, Qianqian Qi
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2012/562081
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The instability and sensitivity of a lake ecosystem to the finite-amplitude perturbations related to the initial condition and the parameter correspondingly are studied. The CNOP-I and CNOP-P methods are adopted to investigate this nonlinear system. The numerical results with CNOP-I method show that the lake ecosystem can be nonlinearly unstable with finite-amplitude initial perturbations when the nutrient loading rate is between the two bifurcation points. A large enough finite amplitude initial perturbation, that is, CNOP-I, can induce a transition from an oligotrophic (eutrophic) state to an eutrophic (oligotrophic) state. With CNOP-P method, it is shown that the lake ecosystem can be transformed from an oligotrophic (eutrophic) state to an eutrophic (oligotrophic) state with a large enough finite amplitude parameter perturbation, that is, CNOP-P, no matter how large the nutrient loading rate is.
ISSN:1687-9309
1687-9317