The Sensitivity Analysis of a Lake Ecosystem with the Conditional Nonlinear Optimal Perturbation Method
The instability and sensitivity of a lake ecosystem to the finite-amplitude perturbations related to the initial condition and the parameter correspondingly are studied. The CNOP-I and CNOP-P methods are adopted to investigate this nonlinear system. The numerical results with CNOP-I method show that...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2012-01-01
|
| Series: | Advances in Meteorology |
| Online Access: | http://dx.doi.org/10.1155/2012/562081 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The instability and sensitivity of a lake ecosystem to the finite-amplitude perturbations related to the initial condition and the parameter correspondingly are studied. The CNOP-I and CNOP-P methods are adopted to investigate this nonlinear system. The numerical results with CNOP-I method show that the lake ecosystem can be nonlinearly unstable with finite-amplitude initial perturbations when the nutrient loading rate is between the two bifurcation points. A large enough finite amplitude initial perturbation, that is, CNOP-I, can induce a transition from an oligotrophic (eutrophic) state to an eutrophic (oligotrophic) state. With CNOP-P method, it is shown that the lake ecosystem can be transformed from an oligotrophic (eutrophic) state to an eutrophic (oligotrophic) state with a large enough finite amplitude parameter perturbation, that is, CNOP-P, no matter how large the nutrient loading rate is. |
|---|---|
| ISSN: | 1687-9309 1687-9317 |