Convergence Analysis of Incomplete Biquadratic Rectangular Element for Fourth-Order Singular Perturbation Problem on Anisotropic Meshes
The convergence analysis of a Morley type rectangular element for the fourth-order elliptic singular perturbation problem is considered. A counterexample is provided to show that the element is not uniformly convergent with respect to the perturbation parameter. A modified finite element approximati...
Saved in:
| Main Authors: | Pingli Xie, Meng Hu |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | Abstract and Applied Analysis |
| Online Access: | http://dx.doi.org/10.1155/2014/234375 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Robust Error Estimation for Singularly Perturbed Fourth Order Problems
by: S. Franz, et al.
Published: (2016-06-01) -
Singular anisotropic equations with a sign-changing perturbation
by: Zhenhai Liu, et al.
Published: (2023-10-01) -
Supercloseness Result of Higher Order FEM/LDG Coupled Method for Solving Singularly Perturbed Problem on S-Type Mesh
by: Shenglan Xie, et al.
Published: (2014-01-01) -
A Uniformly Convergent Scheme for Singularly Perturbed Unsteady Reaction–Diffusion Problems
by: Amare Worku Demsie, et al.
Published: (2025-01-01) -
A novel quintic B-spline technique for numerical solution of fourth-order singularly-perturbed boundary value problems with discontinuous source terms
by: Shilpkala T. Mane, et al.
Published: (2024-12-01)