Superior energy storage capacity of polymer-based bilayer composites by introducing 2D ferroelectric micro-sheets
Abstract Dielectric polymer capacitors suffer from low discharged energy density and efficiency due to their low breakdown strength, small dielectric constant and large electric hysteresis. Herein, a synergistic enhancement strategy is proposed to significantly increase both breakdown strength and d...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-55112-1 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Dielectric polymer capacitors suffer from low discharged energy density and efficiency due to their low breakdown strength, small dielectric constant and large electric hysteresis. Herein, a synergistic enhancement strategy is proposed to significantly increase both breakdown strength and dielectric constant while suppressing hysteresis, through introducing 2-dimensional bismuth layer-structured Na0.5Bi4.5Ti4O15 micro-sheets and designing a unique bilayer structure. Excitingly, an ultra-high discharged energy density of 25.0 J cm−3 and a large efficiency of 81.2% are achieved in Na0.5Bi4.5Ti4O15-poly(vinylidene fluoride-co-hexafluoropropylene)/Na0.5Bi4.5Ti4O15-polyetherimide bilayer composites under a dramatically enhanced breakdown strength of 8283 kV cm−1. Finite element simulations along with experimental test results demonstrate that greatly improved breakdown strength is ascribed to uniform and horizontal alignments of Na0.5Bi4.5Ti4O15 sheets (~1–2 μm) in the matrix and interface effect of adjacent layers with large dielectric differences, which effectively inhibit electrical tree evolution and conduction loss. This work provides a strong foundation for developing high-performance polymer-based energy storage devices. |
---|---|
ISSN: | 2041-1723 |