Generation and characterisation of four human NAD(P)HX epimerase (NAXE) knockout iPSC lines

Pathogenic variants in NAD(P)HX epimerase (NAXE) cause early-onset progressive encephalopathy with brain edema and/or leukoencephalopathy-1 (PEBEL1), an ultra-rare severe neurometabolic disorder resulting in death in infancy. The absence of functional NAD(P)HX epimerase leads to accumulation of S- a...

Full description

Saved in:
Bibliographic Details
Main Authors: Tim Sikora, Myrto Patraskaki, Sara Howden, Alison Graham, John Christodoulou, Carole L. Linster, Nicole J. Van Bergen
Format: Article
Language:English
Published: Elsevier 2025-09-01
Series:Stem Cell Research
Online Access:http://www.sciencedirect.com/science/article/pii/S1873506125001321
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849248166253166592
author Tim Sikora
Myrto Patraskaki
Sara Howden
Alison Graham
John Christodoulou
Carole L. Linster
Nicole J. Van Bergen
author_facet Tim Sikora
Myrto Patraskaki
Sara Howden
Alison Graham
John Christodoulou
Carole L. Linster
Nicole J. Van Bergen
author_sort Tim Sikora
collection DOAJ
description Pathogenic variants in NAD(P)HX epimerase (NAXE) cause early-onset progressive encephalopathy with brain edema and/or leukoencephalopathy-1 (PEBEL1), an ultra-rare severe neurometabolic disorder resulting in death in infancy. The absence of functional NAD(P)HX epimerase leads to accumulation of S- and R-forms of NAD(P)HX, inhibiting key metabolic pathways. We have generated four NAXE-deficient cell lines via simultaneous CRISPR/Cas9-mediated gene knockout (KO) of NAXE and episomal reprogramming of control human fibroblasts into induced pluripotent stem cells (iPSCs). We have demonstrated loss of NAXE gene expression, characterized iPSC pluripotency and differentiation potential into three germ layers. This provides a suitable model for investigating disease mechanisms and therapies.
format Article
id doaj-art-49c52aa43e7449b8ac5f9cc115bc1488
institution Kabale University
issn 1873-5061
language English
publishDate 2025-09-01
publisher Elsevier
record_format Article
series Stem Cell Research
spelling doaj-art-49c52aa43e7449b8ac5f9cc115bc14882025-08-20T03:58:00ZengElsevierStem Cell Research1873-50612025-09-018710378210.1016/j.scr.2025.103782Generation and characterisation of four human NAD(P)HX epimerase (NAXE) knockout iPSC linesTim Sikora0Myrto Patraskaki1Sara Howden2Alison Graham3John Christodoulou4Carole L. Linster5Nicole J. Van Bergen6Murdoch Children’s Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, AustraliaLuxembourg Centre for Systems Biomedicine, L-4362 Esch-sur-Alzette, LuxembourgMurdoch Children’s Research Institute, Parkville, Victoria, AustraliaMurdoch Children’s Research Institute, Parkville, Victoria, AustraliaMurdoch Children’s Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, AustraliaLuxembourg Centre for Systems Biomedicine, L-4362 Esch-sur-Alzette, LuxembourgMurdoch Children’s Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia; Corresponding author at: Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria 3052 Australia.Pathogenic variants in NAD(P)HX epimerase (NAXE) cause early-onset progressive encephalopathy with brain edema and/or leukoencephalopathy-1 (PEBEL1), an ultra-rare severe neurometabolic disorder resulting in death in infancy. The absence of functional NAD(P)HX epimerase leads to accumulation of S- and R-forms of NAD(P)HX, inhibiting key metabolic pathways. We have generated four NAXE-deficient cell lines via simultaneous CRISPR/Cas9-mediated gene knockout (KO) of NAXE and episomal reprogramming of control human fibroblasts into induced pluripotent stem cells (iPSCs). We have demonstrated loss of NAXE gene expression, characterized iPSC pluripotency and differentiation potential into three germ layers. This provides a suitable model for investigating disease mechanisms and therapies.http://www.sciencedirect.com/science/article/pii/S1873506125001321
spellingShingle Tim Sikora
Myrto Patraskaki
Sara Howden
Alison Graham
John Christodoulou
Carole L. Linster
Nicole J. Van Bergen
Generation and characterisation of four human NAD(P)HX epimerase (NAXE) knockout iPSC lines
Stem Cell Research
title Generation and characterisation of four human NAD(P)HX epimerase (NAXE) knockout iPSC lines
title_full Generation and characterisation of four human NAD(P)HX epimerase (NAXE) knockout iPSC lines
title_fullStr Generation and characterisation of four human NAD(P)HX epimerase (NAXE) knockout iPSC lines
title_full_unstemmed Generation and characterisation of four human NAD(P)HX epimerase (NAXE) knockout iPSC lines
title_short Generation and characterisation of four human NAD(P)HX epimerase (NAXE) knockout iPSC lines
title_sort generation and characterisation of four human nad p hx epimerase naxe knockout ipsc lines
url http://www.sciencedirect.com/science/article/pii/S1873506125001321
work_keys_str_mv AT timsikora generationandcharacterisationoffourhumannadphxepimerasenaxeknockoutipsclines
AT myrtopatraskaki generationandcharacterisationoffourhumannadphxepimerasenaxeknockoutipsclines
AT sarahowden generationandcharacterisationoffourhumannadphxepimerasenaxeknockoutipsclines
AT alisongraham generationandcharacterisationoffourhumannadphxepimerasenaxeknockoutipsclines
AT johnchristodoulou generationandcharacterisationoffourhumannadphxepimerasenaxeknockoutipsclines
AT carolellinster generationandcharacterisationoffourhumannadphxepimerasenaxeknockoutipsclines
AT nicolejvanbergen generationandcharacterisationoffourhumannadphxepimerasenaxeknockoutipsclines