Benchmarking of Anomaly Detection Methods for Industry 4.0: Evaluation, Ranking, and Practical Recommendations
Quality control and predictive maintenance are two essential pillars of Industry 4.0, aiming to optimize production, reduce operational costs, and enhance system reliability. Real-time visual inspection ensures early detection of manufacturing defects, assembly errors, or texture inconsistencies, pr...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Big Data and Cognitive Computing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2504-2289/9/5/128 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Quality control and predictive maintenance are two essential pillars of Industry 4.0, aiming to optimize production, reduce operational costs, and enhance system reliability. Real-time visual inspection ensures early detection of manufacturing defects, assembly errors, or texture inconsistencies, preventing defective products from reaching customers. Predictive maintenance leverages sensor data by analyzing vibrations, temperature, and pressure signals to anticipate failures and avoid production downtime. Image-based quality control has become critical in industries such as automotive, electronics, aerospace, and food processing, where visual appearance is a key quality indicator. Although advances in deep learning and computer vision have significantly improved anomaly detection, industrial deployments remain challenged by the scarcity of labeled anomalies and the variability of defects. These issues increasingly lead to the adoption of unsupervised methods and generative approaches, which, despite their effectiveness, introduce substantial computational complexity. We conduct a unified comparison of ten anomaly detection methods, categorizing them according to their reliance on synthetic anomaly generation and their detection strategy, either reconstruction-based or feature-based. All models are trained exclusively on normal data to mirror realistic industrial conditions. Our evaluation framework combines performance metrics such as recall, precision, and their harmonic mean, emphasizing the need to minimize false negatives that could lead to critical production failures. In addition, we assess environmental impact and hardware complexity to better guide method selection. Practical recommendations are provided to balance robustness, operational feasibility, and sustainability in industrial applications. |
|---|---|
| ISSN: | 2504-2289 |