Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs

Let $(V,E)$ be a locally finite weighted graph. We study some qualitative properties of positive solutions of the Lichnerowicz equation \[ v_t-\Delta v=v^{-p-2}-v^p, \;(x,t)\in V \times \mathbb{R}, \] and of (sign-changing) solutions of the Ginzburg-Landau system \[ {\left\lbrace \begin{array}{ll} u...

Full description

Saved in:
Bibliographic Details
Main Authors: Duong, Anh Tuan, Fujiié, Setsuro
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.653/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206146776956928
author Duong, Anh Tuan
Fujiié, Setsuro
author_facet Duong, Anh Tuan
Fujiié, Setsuro
author_sort Duong, Anh Tuan
collection DOAJ
description Let $(V,E)$ be a locally finite weighted graph. We study some qualitative properties of positive solutions of the Lichnerowicz equation \[ v_t-\Delta v=v^{-p-2}-v^p, \;(x,t)\in V \times \mathbb{R}, \] and of (sign-changing) solutions of the Ginzburg-Landau system \[ {\left\lbrace \begin{array}{ll} u_t-\Delta u=u-u^3-\lambda uv^2 , \;(x,t)\in V \times \mathbb{R},\\ v_t-\Delta v=v-v^3-\lambda vu^2, \;(x,t)\in V \times \mathbb{R}, \end{array}\right.} \] where $p>0$, $\lambda >0$ and $\Delta $ is the standard discrete graph Laplacian. Firstly, we prove that any positive solution $v$ of the Lichnerowicz equation satisfies $v\ge 1$. Moreover, if we assume the boundedness of positive solution $v$, then it must be trivial, i.e $v\equiv 1$. We also construct a nontrivial positive solution of the Lichnerowicz equation to show that the boundedness assumption is necessary. Secondly, we obtain sharp upper bound for solutions of the Ginzburg-Landau system depending on the range of $\lambda $.
format Article
id doaj-art-4952b899c92c4ff3912c382d2803e267
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-4952b899c92c4ff3912c382d2803e2672025-02-07T11:23:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G111413142310.5802/crmath.65310.5802/crmath.653Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphsDuong, Anh Tuan0Fujiié, Setsuro1Faculty of Mathematics and Informatics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam.Department of Mathematical Sciences, Ritsumeikan University, JapanLet $(V,E)$ be a locally finite weighted graph. We study some qualitative properties of positive solutions of the Lichnerowicz equation \[ v_t-\Delta v=v^{-p-2}-v^p, \;(x,t)\in V \times \mathbb{R}, \] and of (sign-changing) solutions of the Ginzburg-Landau system \[ {\left\lbrace \begin{array}{ll} u_t-\Delta u=u-u^3-\lambda uv^2 , \;(x,t)\in V \times \mathbb{R},\\ v_t-\Delta v=v-v^3-\lambda vu^2, \;(x,t)\in V \times \mathbb{R}, \end{array}\right.} \] where $p>0$, $\lambda >0$ and $\Delta $ is the standard discrete graph Laplacian. Firstly, we prove that any positive solution $v$ of the Lichnerowicz equation satisfies $v\ge 1$. Moreover, if we assume the boundedness of positive solution $v$, then it must be trivial, i.e $v\equiv 1$. We also construct a nontrivial positive solution of the Lichnerowicz equation to show that the boundedness assumption is necessary. Secondly, we obtain sharp upper bound for solutions of the Ginzburg-Landau system depending on the range of $\lambda $.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.653/Liouville-type theoremsLichnerowicz equationsGinzburg–Landau systemnonexistence resultsqualitative propertylocally finite graphs
spellingShingle Duong, Anh Tuan
Fujiié, Setsuro
Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs
Comptes Rendus. Mathématique
Liouville-type theorems
Lichnerowicz equations
Ginzburg–Landau system
nonexistence results
qualitative property
locally finite graphs
title Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs
title_full Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs
title_fullStr Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs
title_full_unstemmed Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs
title_short Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs
title_sort some qualitative properties of lichnerowicz equations and ginzburg landau systems on locally finite graphs
topic Liouville-type theorems
Lichnerowicz equations
Ginzburg–Landau system
nonexistence results
qualitative property
locally finite graphs
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.653/
work_keys_str_mv AT duonganhtuan somequalitativepropertiesoflichnerowiczequationsandginzburglandausystemsonlocallyfinitegraphs
AT fujiiesetsuro somequalitativepropertiesoflichnerowiczequationsandginzburglandausystemsonlocallyfinitegraphs