Surface Local Impurity Scattering as a Probe for Topological Kondo Insulators

Abstract Shortly after the discovery of topological band insulators, topological Kondo insulators (TKIs) is also theoretically predicted. The latter has ignited revival interest in the properties of Kondo insulators. Currently, the feasibility of topological nature in SmB6 is intensively analyzed by...

Full description

Saved in:
Bibliographic Details
Main Authors: C.‐C. Joseph Wang, Jean‐Pierre Julien, A. V. Balatsky, Jian‐Xin Zhu
Format: Article
Language:English
Published: Wiley-VCH 2025-07-01
Series:Advanced Physics Research
Subjects:
Online Access:https://doi.org/10.1002/apxr.202500003
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Shortly after the discovery of topological band insulators, topological Kondo insulators (TKIs) is also theoretically predicted. The latter has ignited revival interest in the properties of Kondo insulators. Currently, the feasibility of topological nature in SmB6 is intensively analyzed by several complementary probes. Here by starting with a minimal‐orbital Anderson lattice model, the local electronic structure is explored in a Kondo insulator. It is showed that the two strong topological regimes sandwiching the weak topological regime give rise to a single Dirac cone, which is located near the center or corner of the surface Brillouin zone. It is further found that, when a single impurity is placed on the surface, low‐energy resonance states are induced in the weak scattering limit for the strong TKI regimes and the resonance level moves monotonically across the hybridization gap with the strength of impurity scattering potential; while low energy states can only be induced in the unitary scattering limit for the weak TKI regime, where the resonance level moves universally toward the center of the hybridization gap. These impurity‐induced low‐energy quasiparticles will lead to characteristic signatures in scanning tunneling microscopy/spectroscopy, which has recently found success in probing into exotic properties in heavy fermion systems.
ISSN:2751-1200