A Dirichlet Autoregressive Model for the Analysis of Microbiota Time-Series Data

Growing interest in understanding microbiota dynamics has motivated the development of different strategies to model microbiota time series data. However, all of them must tackle the fact that the available data are high-dimensional, posing strong statistical and computational challenges. In order t...

Full description

Saved in:
Bibliographic Details
Main Authors: I. Creus-Martí, A. Moya, F. J. Santonja
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2021/9951817
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850223551412436992
author I. Creus-Martí
A. Moya
F. J. Santonja
author_facet I. Creus-Martí
A. Moya
F. J. Santonja
author_sort I. Creus-Martí
collection DOAJ
description Growing interest in understanding microbiota dynamics has motivated the development of different strategies to model microbiota time series data. However, all of them must tackle the fact that the available data are high-dimensional, posing strong statistical and computational challenges. In order to address this challenge, we propose a Dirichlet autoregressive model with time-varying parameters, which can be directly adapted to explain the effect of groups of taxa, thus reducing the number of parameters estimated by maximum likelihood. A strategy has been implemented which speeds up this estimation. The usefulness of the proposed model is illustrated by application to a case study.
format Article
id doaj-art-48ff9fe29ee2446aaeee837a2ddeef0b
institution OA Journals
issn 1076-2787
1099-0526
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Complexity
spelling doaj-art-48ff9fe29ee2446aaeee837a2ddeef0b2025-08-20T02:05:55ZengWileyComplexity1076-27871099-05262021-01-01202110.1155/2021/99518179951817A Dirichlet Autoregressive Model for the Analysis of Microbiota Time-Series DataI. Creus-Martí0A. Moya1F. J. Santonja2Instituto de Biología Integrativa de Sistemas (I2Sysbio), Universitat de València-CSIC, Valencia, SpainInstituto de Biología Integrativa de Sistemas (I2Sysbio), Universitat de València-CSIC, Valencia, SpainDepartamento de Estadística e Investigación Operativa, Universitat de València, Valencia, SpainGrowing interest in understanding microbiota dynamics has motivated the development of different strategies to model microbiota time series data. However, all of them must tackle the fact that the available data are high-dimensional, posing strong statistical and computational challenges. In order to address this challenge, we propose a Dirichlet autoregressive model with time-varying parameters, which can be directly adapted to explain the effect of groups of taxa, thus reducing the number of parameters estimated by maximum likelihood. A strategy has been implemented which speeds up this estimation. The usefulness of the proposed model is illustrated by application to a case study.http://dx.doi.org/10.1155/2021/9951817
spellingShingle I. Creus-Martí
A. Moya
F. J. Santonja
A Dirichlet Autoregressive Model for the Analysis of Microbiota Time-Series Data
Complexity
title A Dirichlet Autoregressive Model for the Analysis of Microbiota Time-Series Data
title_full A Dirichlet Autoregressive Model for the Analysis of Microbiota Time-Series Data
title_fullStr A Dirichlet Autoregressive Model for the Analysis of Microbiota Time-Series Data
title_full_unstemmed A Dirichlet Autoregressive Model for the Analysis of Microbiota Time-Series Data
title_short A Dirichlet Autoregressive Model for the Analysis of Microbiota Time-Series Data
title_sort dirichlet autoregressive model for the analysis of microbiota time series data
url http://dx.doi.org/10.1155/2021/9951817
work_keys_str_mv AT icreusmarti adirichletautoregressivemodelfortheanalysisofmicrobiotatimeseriesdata
AT amoya adirichletautoregressivemodelfortheanalysisofmicrobiotatimeseriesdata
AT fjsantonja adirichletautoregressivemodelfortheanalysisofmicrobiotatimeseriesdata
AT icreusmarti dirichletautoregressivemodelfortheanalysisofmicrobiotatimeseriesdata
AT amoya dirichletautoregressivemodelfortheanalysisofmicrobiotatimeseriesdata
AT fjsantonja dirichletautoregressivemodelfortheanalysisofmicrobiotatimeseriesdata