Scalars with non-decoupling phenomenology at future colliders
Abstract We consider a class of BSM models where a generic scalar electroweak multiplet obtains a significant fraction of its mass from a coupling to the Higgs. Such models are non-decoupling: their new states are necessarily at the TeV scale or below, they can significantly alter the electroweak ph...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2025-04-01
|
| Series: | Journal of High Energy Physics |
| Subjects: | |
| Online Access: | https://doi.org/10.1007/JHEP04(2025)197 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract We consider a class of BSM models where a generic scalar electroweak multiplet obtains a significant fraction of its mass from a coupling to the Higgs. Such models are non-decoupling: their new states are necessarily at the TeV scale or below, they can significantly alter the electroweak phase transition, and they have a pattern of low energy effects that are distinct from those predicted by SMEFT. Using their minimal gauge and Higgs couplings, we show that a future precision lepton collider (such as FCC-ee, CEPC, ILC, or CLIC) can probe all the non-decoupling parameter space of scalar electroweak multiplets, providing fundamental information on the mechanism of electroweak symmetry breaking. |
|---|---|
| ISSN: | 1029-8479 |