Expression of concern: Short-time photovoltaic output prediction method based on depthwise separable convolution visual geometry group-deep gate recurrent neural network

Saved in:
Bibliographic Details
Main Author: Frontiers Editorial Office
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-12-01
Series:Frontiers in Energy Research
Online Access:https://www.frontiersin.org/articles/10.3389/fenrg.2024.1548438/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841553284182048768
author Frontiers Editorial Office
author_facet Frontiers Editorial Office
author_sort Frontiers Editorial Office
collection DOAJ
format Article
id doaj-art-48d6e095e8b04919bd14eb091060ff27
institution Kabale University
issn 2296-598X
language English
publishDate 2024-12-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Energy Research
spelling doaj-art-48d6e095e8b04919bd14eb091060ff272025-01-09T11:01:37ZengFrontiers Media S.A.Frontiers in Energy Research2296-598X2024-12-011210.3389/fenrg.2024.15484381548438Expression of concern: Short-time photovoltaic output prediction method based on depthwise separable convolution visual geometry group-deep gate recurrent neural networkFrontiers Editorial Officehttps://www.frontiersin.org/articles/10.3389/fenrg.2024.1548438/full
spellingShingle Frontiers Editorial Office
Expression of concern: Short-time photovoltaic output prediction method based on depthwise separable convolution visual geometry group-deep gate recurrent neural network
Frontiers in Energy Research
title Expression of concern: Short-time photovoltaic output prediction method based on depthwise separable convolution visual geometry group-deep gate recurrent neural network
title_full Expression of concern: Short-time photovoltaic output prediction method based on depthwise separable convolution visual geometry group-deep gate recurrent neural network
title_fullStr Expression of concern: Short-time photovoltaic output prediction method based on depthwise separable convolution visual geometry group-deep gate recurrent neural network
title_full_unstemmed Expression of concern: Short-time photovoltaic output prediction method based on depthwise separable convolution visual geometry group-deep gate recurrent neural network
title_short Expression of concern: Short-time photovoltaic output prediction method based on depthwise separable convolution visual geometry group-deep gate recurrent neural network
title_sort expression of concern short time photovoltaic output prediction method based on depthwise separable convolution visual geometry group deep gate recurrent neural network
url https://www.frontiersin.org/articles/10.3389/fenrg.2024.1548438/full
work_keys_str_mv AT frontierseditorialoffice expressionofconcernshorttimephotovoltaicoutputpredictionmethodbasedondepthwiseseparableconvolutionvisualgeometrygroupdeepgaterecurrentneuralnetwork