Semiconducting Small Molecules as Active Materials for p‐Type Accumulation Mode Organic Electrochemical Transistors

Abstract A series of semiconducting small molecules with bithiophene or bis‐3,4‐ethylenedioxythiophene cores are designed and synthesized. The molecules display stable reversible oxidation in solution and can be reversibly oxidized in the solid state with aqueous electrolyte when functionalized with...

Full description

Saved in:
Bibliographic Details
Main Authors: Zachary S. Parr, Reem B. Rashid, Bryan D. Paulsen, Benjamin Poggi, Ellasia Tan, Mark Freeley, Matteo Palma, Isaac Abrahams, Jonathan Rivnay, Christian B. Nielsen
Format: Article
Language:English
Published: Wiley-VCH 2020-06-01
Series:Advanced Electronic Materials
Subjects:
Online Access:https://doi.org/10.1002/aelm.202000215
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract A series of semiconducting small molecules with bithiophene or bis‐3,4‐ethylenedioxythiophene cores are designed and synthesized. The molecules display stable reversible oxidation in solution and can be reversibly oxidized in the solid state with aqueous electrolyte when functionalized with polar triethylene glycol side chains. Evidence of promising ion injection properties observed with cyclic voltammetry is complemented by strong electrochromism probed by spectroelectrochemistry. Blending these molecules with high molecular weight polyethylene oxide (PEO) is found to improve both ion injection and thin film stability. The molecules and their corresponding PEO blends are investigated as active layers in organic electrochemical transistors (OECTs). For the most promising molecule:polymer blend (P4E4:PEO), p‐type accumulation mode OECTs with µA drain currents, μS peak transconductances, and a µC* figure‐of‐merit value of 0.81 F V−1 cm−1 s−1 are obtained.
ISSN:2199-160X