Numerical analysis of an incompressible soft material poromechanics model using $\tt {T}$-coercivity

This article is devoted to the numerical analysis of the full discretization of a generalized poromechanical model resulting from the linearization of an initial model fitted to soft tissue perfusion. Our strategy here is based on the use of energy-based estimates and $\tt {T}$-coercivity methods, s...

Full description

Saved in:
Bibliographic Details
Main Authors: Barré, Mathieu, Grandmont, Céline, Moireau, Philippe
Format: Article
Language:English
Published: Académie des sciences 2023-06-01
Series:Comptes Rendus. Mécanique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.194/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825205994286743552
author Barré, Mathieu
Grandmont, Céline
Moireau, Philippe
author_facet Barré, Mathieu
Grandmont, Céline
Moireau, Philippe
author_sort Barré, Mathieu
collection DOAJ
description This article is devoted to the numerical analysis of the full discretization of a generalized poromechanical model resulting from the linearization of an initial model fitted to soft tissue perfusion. Our strategy here is based on the use of energy-based estimates and $\tt {T}$-coercivity methods, so that the numerical analysis benefits from the essential tools used in the existence analysis of the continuous-time and continuous-space formulation. In particular, our $\tt {T}$-coercivity strategy allows us to obtain the necessary inf-sup condition for the global system from the inf-sup condition restricted to a subsystem having the same structure as the Stokes problem. This allows us to prove that any finite element pair adapted to the Stokes problem is also suitable for this global poromechanical model regardless of porosity and permeability, generalizing previous results from the literature studying this model.
format Article
id doaj-art-48ae1f979c1f4c13964186d36db826a9
institution Kabale University
issn 1873-7234
language English
publishDate 2023-06-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mécanique
spelling doaj-art-48ae1f979c1f4c13964186d36db826a92025-02-07T13:46:20ZengAcadémie des sciencesComptes Rendus. Mécanique1873-72342023-06-01351S1175210.5802/crmeca.19410.5802/crmeca.194Numerical analysis of an incompressible soft material poromechanics model using $\tt {T}$-coercivityBarré, Mathieu0Grandmont, Céline1Moireau, Philippe2Inria, 1 Rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France; LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, FranceDépartement de Mathématique, Université Libre de Bruxelles, CP 214, Boulevard du Triomphe, 1050 Bruxelles, Belgium; Inria, 2 Rue Simone Iff, 75012 Paris, France; LJLL, Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, FranceInria, Batiment Alan Turing, 1 Rue Honoré d’Estienne d’Orves, Campus de l’École Polytechnique, 91120 Palaiseau, France; LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, FranceThis article is devoted to the numerical analysis of the full discretization of a generalized poromechanical model resulting from the linearization of an initial model fitted to soft tissue perfusion. Our strategy here is based on the use of energy-based estimates and $\tt {T}$-coercivity methods, so that the numerical analysis benefits from the essential tools used in the existence analysis of the continuous-time and continuous-space formulation. In particular, our $\tt {T}$-coercivity strategy allows us to obtain the necessary inf-sup condition for the global system from the inf-sup condition restricted to a subsystem having the same structure as the Stokes problem. This allows us to prove that any finite element pair adapted to the Stokes problem is also suitable for this global poromechanical model regardless of porosity and permeability, generalizing previous results from the literature studying this model.https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.194/Poromechanicsmixture theoryincompressible limittotal discretizationinf-sup stabilityenergy preserving time-scheme
spellingShingle Barré, Mathieu
Grandmont, Céline
Moireau, Philippe
Numerical analysis of an incompressible soft material poromechanics model using $\tt {T}$-coercivity
Comptes Rendus. Mécanique
Poromechanics
mixture theory
incompressible limit
total discretization
inf-sup stability
energy preserving time-scheme
title Numerical analysis of an incompressible soft material poromechanics model using $\tt {T}$-coercivity
title_full Numerical analysis of an incompressible soft material poromechanics model using $\tt {T}$-coercivity
title_fullStr Numerical analysis of an incompressible soft material poromechanics model using $\tt {T}$-coercivity
title_full_unstemmed Numerical analysis of an incompressible soft material poromechanics model using $\tt {T}$-coercivity
title_short Numerical analysis of an incompressible soft material poromechanics model using $\tt {T}$-coercivity
title_sort numerical analysis of an incompressible soft material poromechanics model using tt t coercivity
topic Poromechanics
mixture theory
incompressible limit
total discretization
inf-sup stability
energy preserving time-scheme
url https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.194/
work_keys_str_mv AT barremathieu numericalanalysisofanincompressiblesoftmaterialporomechanicsmodelusingtttcoercivity
AT grandmontceline numericalanalysisofanincompressiblesoftmaterialporomechanicsmodelusingtttcoercivity
AT moireauphilippe numericalanalysisofanincompressiblesoftmaterialporomechanicsmodelusingtttcoercivity