Statistics of Quantum Numbers for Non-Equivalent Fermions in Single-<i>j</i> Shells

This work addresses closed-form expressions for the distributions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>M</mi><mo>)</mo><...

Full description

Saved in:
Bibliographic Details
Main Author: Jean-Christophe Pain
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Atoms
Subjects:
Online Access:https://www.mdpi.com/2218-2004/13/4/25
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850155939641950208
author Jean-Christophe Pain
author_facet Jean-Christophe Pain
author_sort Jean-Christophe Pain
collection DOAJ
description This work addresses closed-form expressions for the distributions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>M</mi><mo>)</mo></mrow></semantics></math></inline-formula> of the magnetic quantum numbers <i>M</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>(</mo><mi>J</mi><mo>)</mo></mrow></semantics></math></inline-formula> of total angular momentum <i>J</i> for non-equivalent fermions in single-<i>j</i> orbits. Such quantities play an important role in both nuclear and atomic physics, through the shell models. Using irreducible representations of the rotation group, different kinds of formulas are presented, involving multinomial coefficients, generalized Pascal triangle coefficients, or hypergeometric functions. Special cases are discussed, and the connections between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>M</mi><mo>)</mo></mrow></semantics></math></inline-formula> (and therefore <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>(</mo><mi>J</mi><mo>)</mo></mrow></semantics></math></inline-formula>) and mathematical functions such as elementary symmetric, cyclotomic, and Jacobi polynomials are outlined.
format Article
id doaj-art-4878a79a224742eaaf0d2c81ef938566
institution OA Journals
issn 2218-2004
language English
publishDate 2025-03-01
publisher MDPI AG
record_format Article
series Atoms
spelling doaj-art-4878a79a224742eaaf0d2c81ef9385662025-08-20T02:24:43ZengMDPI AGAtoms2218-20042025-03-011342510.3390/atoms13040025Statistics of Quantum Numbers for Non-Equivalent Fermions in Single-<i>j</i> ShellsJean-Christophe Pain0CEA, DAM, DIF, F-91297 Arpajon, FranceThis work addresses closed-form expressions for the distributions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>M</mi><mo>)</mo></mrow></semantics></math></inline-formula> of the magnetic quantum numbers <i>M</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>(</mo><mi>J</mi><mo>)</mo></mrow></semantics></math></inline-formula> of total angular momentum <i>J</i> for non-equivalent fermions in single-<i>j</i> orbits. Such quantities play an important role in both nuclear and atomic physics, through the shell models. Using irreducible representations of the rotation group, different kinds of formulas are presented, involving multinomial coefficients, generalized Pascal triangle coefficients, or hypergeometric functions. Special cases are discussed, and the connections between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>M</mi><mo>)</mo></mrow></semantics></math></inline-formula> (and therefore <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>(</mo><mi>J</mi><mo>)</mo></mrow></semantics></math></inline-formula>) and mathematical functions such as elementary symmetric, cyclotomic, and Jacobi polynomials are outlined.https://www.mdpi.com/2218-2004/13/4/25quantum mechanicsangular momentumelectron configurationsPauli exclusion principleenergy levelscomplex spectra
spellingShingle Jean-Christophe Pain
Statistics of Quantum Numbers for Non-Equivalent Fermions in Single-<i>j</i> Shells
Atoms
quantum mechanics
angular momentum
electron configurations
Pauli exclusion principle
energy levels
complex spectra
title Statistics of Quantum Numbers for Non-Equivalent Fermions in Single-<i>j</i> Shells
title_full Statistics of Quantum Numbers for Non-Equivalent Fermions in Single-<i>j</i> Shells
title_fullStr Statistics of Quantum Numbers for Non-Equivalent Fermions in Single-<i>j</i> Shells
title_full_unstemmed Statistics of Quantum Numbers for Non-Equivalent Fermions in Single-<i>j</i> Shells
title_short Statistics of Quantum Numbers for Non-Equivalent Fermions in Single-<i>j</i> Shells
title_sort statistics of quantum numbers for non equivalent fermions in single i j i shells
topic quantum mechanics
angular momentum
electron configurations
Pauli exclusion principle
energy levels
complex spectra
url https://www.mdpi.com/2218-2004/13/4/25
work_keys_str_mv AT jeanchristophepain statisticsofquantumnumbersfornonequivalentfermionsinsingleijishells