Statistics of Quantum Numbers for Non-Equivalent Fermions in Single-<i>j</i> Shells

This work addresses closed-form expressions for the distributions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>M</mi><mo>)</mo><...

Full description

Saved in:
Bibliographic Details
Main Author: Jean-Christophe Pain
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Atoms
Subjects:
Online Access:https://www.mdpi.com/2218-2004/13/4/25
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work addresses closed-form expressions for the distributions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>M</mi><mo>)</mo></mrow></semantics></math></inline-formula> of the magnetic quantum numbers <i>M</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>(</mo><mi>J</mi><mo>)</mo></mrow></semantics></math></inline-formula> of total angular momentum <i>J</i> for non-equivalent fermions in single-<i>j</i> orbits. Such quantities play an important role in both nuclear and atomic physics, through the shell models. Using irreducible representations of the rotation group, different kinds of formulas are presented, involving multinomial coefficients, generalized Pascal triangle coefficients, or hypergeometric functions. Special cases are discussed, and the connections between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>M</mi><mo>)</mo></mrow></semantics></math></inline-formula> (and therefore <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>(</mo><mi>J</mi><mo>)</mo></mrow></semantics></math></inline-formula>) and mathematical functions such as elementary symmetric, cyclotomic, and Jacobi polynomials are outlined.
ISSN:2218-2004