Statistics of Quantum Numbers for Non-Equivalent Fermions in Single-<i>j</i> Shells
This work addresses closed-form expressions for the distributions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>M</mi><mo>)</mo><...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Atoms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2218-2004/13/4/25 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This work addresses closed-form expressions for the distributions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>M</mi><mo>)</mo></mrow></semantics></math></inline-formula> of the magnetic quantum numbers <i>M</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>(</mo><mi>J</mi><mo>)</mo></mrow></semantics></math></inline-formula> of total angular momentum <i>J</i> for non-equivalent fermions in single-<i>j</i> orbits. Such quantities play an important role in both nuclear and atomic physics, through the shell models. Using irreducible representations of the rotation group, different kinds of formulas are presented, involving multinomial coefficients, generalized Pascal triangle coefficients, or hypergeometric functions. Special cases are discussed, and the connections between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mi>M</mi><mo>)</mo></mrow></semantics></math></inline-formula> (and therefore <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>(</mo><mi>J</mi><mo>)</mo></mrow></semantics></math></inline-formula>) and mathematical functions such as elementary symmetric, cyclotomic, and Jacobi polynomials are outlined. |
|---|---|
| ISSN: | 2218-2004 |