Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy
Fabricating eutectic high-entropy alloys (EHEAs) via selective laser melting (SLM) presents significant potential for advanced structural applications. This study explores the microstructural evolution of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Micromachines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-666X/16/6/694 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850168283662123008 |
|---|---|
| author | Xuyun Peng Xiaojun Tan Haibing Xiao Wei Zhang Liang Guo Wei Tan Jian Huang Chaojun Ding Yushan Yang Jieshun Yang Haitao Chen Qingmao Zhang |
| author_facet | Xuyun Peng Xiaojun Tan Haibing Xiao Wei Zhang Liang Guo Wei Tan Jian Huang Chaojun Ding Yushan Yang Jieshun Yang Haitao Chen Qingmao Zhang |
| author_sort | Xuyun Peng |
| collection | DOAJ |
| description | Fabricating eutectic high-entropy alloys (EHEAs) via selective laser melting (SLM) presents significant potential for advanced structural applications. This study explores the microstructural evolution of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> EHEAs fabricated by SLM under varying laser powers. Electron backscatter diffraction (EBSD) analysis revealed that samples fabricated at 200 W exhibited approximately 70% face-centered-cubic (FCC) and 30% body-centered-cubic (BCC) phases. In comparison, those processed at 160 W showed an increased FCC fraction of 85% with a corresponding reduction in BCC content. Grain size measurements indicated that BCC grains were consistently finer than their FCC counterparts. Thermal simulations demonstrated that higher laser power produced deeper melt pools and broader temperature gradients. By correlating thermal history with phase diagram data, the spatial variation in BCC content was attributed to the differential residence time in the 1350–1100 °C range. This study represents one of the first attempts to quantitatively link local thermal histories with the evolution of dual-phase (FCC + BCC) microstructures in EHEAs during SLM. The findings contribute to the improved understanding and control of phase formation in complex alloy systems, providing valuable guidance for tailoring SLM parameters to optimize the phase composition and microstructure of EHEAs. |
| format | Article |
| id | doaj-art-4878366334bd4e5fb3bfb342c0efd2ef |
| institution | OA Journals |
| issn | 2072-666X |
| language | English |
| publishDate | 2025-06-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Micromachines |
| spelling | doaj-art-4878366334bd4e5fb3bfb342c0efd2ef2025-08-20T02:20:59ZengMDPI AGMicromachines2072-666X2025-06-0116669410.3390/mi16060694Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> AlloyXuyun Peng0Xiaojun Tan1Haibing Xiao2Wei Zhang3Liang Guo4Wei Tan5Jian Huang6Chaojun Ding7Yushan Yang8Jieshun Yang9Haitao Chen10Qingmao Zhang11Sino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaIntelligent Manufacturing and Equipment School, Shenzhen Institute of Information Technology, Shenzhen 518172, ChinaIntelligent Manufacturing and Equipment School, Shenzhen Institute of Information Technology, Shenzhen 518172, ChinaGuangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaGuangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, ChinaFabricating eutectic high-entropy alloys (EHEAs) via selective laser melting (SLM) presents significant potential for advanced structural applications. This study explores the microstructural evolution of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> EHEAs fabricated by SLM under varying laser powers. Electron backscatter diffraction (EBSD) analysis revealed that samples fabricated at 200 W exhibited approximately 70% face-centered-cubic (FCC) and 30% body-centered-cubic (BCC) phases. In comparison, those processed at 160 W showed an increased FCC fraction of 85% with a corresponding reduction in BCC content. Grain size measurements indicated that BCC grains were consistently finer than their FCC counterparts. Thermal simulations demonstrated that higher laser power produced deeper melt pools and broader temperature gradients. By correlating thermal history with phase diagram data, the spatial variation in BCC content was attributed to the differential residence time in the 1350–1100 °C range. This study represents one of the first attempts to quantitatively link local thermal histories with the evolution of dual-phase (FCC + BCC) microstructures in EHEAs during SLM. The findings contribute to the improved understanding and control of phase formation in complex alloy systems, providing valuable guidance for tailoring SLM parameters to optimize the phase composition and microstructure of EHEAs.https://www.mdpi.com/2072-666X/16/6/694high-entropy alloyselective laser meltingthermal simulationmicrostructure evolutionFCCBCC |
| spellingShingle | Xuyun Peng Xiaojun Tan Haibing Xiao Wei Zhang Liang Guo Wei Tan Jian Huang Chaojun Ding Yushan Yang Jieshun Yang Haitao Chen Qingmao Zhang Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy Micromachines high-entropy alloy selective laser melting thermal simulation microstructure evolution FCC BCC |
| title | Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy |
| title_full | Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy |
| title_fullStr | Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy |
| title_full_unstemmed | Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy |
| title_short | Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy |
| title_sort | numerical simulation of thermal fields and microstructure evolution in slm of fe sub 32 sub cr sub 33 sub ni sub 29 sub al sub 3 sub ti sub 3 sub alloy |
| topic | high-entropy alloy selective laser melting thermal simulation microstructure evolution FCC BCC |
| url | https://www.mdpi.com/2072-666X/16/6/694 |
| work_keys_str_mv | AT xuyunpeng numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy AT xiaojuntan numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy AT haibingxiao numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy AT weizhang numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy AT liangguo numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy AT weitan numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy AT jianhuang numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy AT chaojunding numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy AT yushanyang numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy AT jieshunyang numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy AT haitaochen numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy AT qingmaozhang numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy |