Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy

Fabricating eutectic high-entropy alloys (EHEAs) via selective laser melting (SLM) presents significant potential for advanced structural applications. This study explores the microstructural evolution of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3...

Full description

Saved in:
Bibliographic Details
Main Authors: Xuyun Peng, Xiaojun Tan, Haibing Xiao, Wei Zhang, Liang Guo, Wei Tan, Jian Huang, Chaojun Ding, Yushan Yang, Jieshun Yang, Haitao Chen, Qingmao Zhang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/16/6/694
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850168283662123008
author Xuyun Peng
Xiaojun Tan
Haibing Xiao
Wei Zhang
Liang Guo
Wei Tan
Jian Huang
Chaojun Ding
Yushan Yang
Jieshun Yang
Haitao Chen
Qingmao Zhang
author_facet Xuyun Peng
Xiaojun Tan
Haibing Xiao
Wei Zhang
Liang Guo
Wei Tan
Jian Huang
Chaojun Ding
Yushan Yang
Jieshun Yang
Haitao Chen
Qingmao Zhang
author_sort Xuyun Peng
collection DOAJ
description Fabricating eutectic high-entropy alloys (EHEAs) via selective laser melting (SLM) presents significant potential for advanced structural applications. This study explores the microstructural evolution of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> EHEAs fabricated by SLM under varying laser powers. Electron backscatter diffraction (EBSD) analysis revealed that samples fabricated at 200 W exhibited approximately 70% face-centered-cubic (FCC) and 30% body-centered-cubic (BCC) phases. In comparison, those processed at 160 W showed an increased FCC fraction of 85% with a corresponding reduction in BCC content. Grain size measurements indicated that BCC grains were consistently finer than their FCC counterparts. Thermal simulations demonstrated that higher laser power produced deeper melt pools and broader temperature gradients. By correlating thermal history with phase diagram data, the spatial variation in BCC content was attributed to the differential residence time in the 1350–1100 °C range. This study represents one of the first attempts to quantitatively link local thermal histories with the evolution of dual-phase (FCC + BCC) microstructures in EHEAs during SLM. The findings contribute to the improved understanding and control of phase formation in complex alloy systems, providing valuable guidance for tailoring SLM parameters to optimize the phase composition and microstructure of EHEAs.
format Article
id doaj-art-4878366334bd4e5fb3bfb342c0efd2ef
institution OA Journals
issn 2072-666X
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Micromachines
spelling doaj-art-4878366334bd4e5fb3bfb342c0efd2ef2025-08-20T02:20:59ZengMDPI AGMicromachines2072-666X2025-06-0116669410.3390/mi16060694Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> AlloyXuyun Peng0Xiaojun Tan1Haibing Xiao2Wei Zhang3Liang Guo4Wei Tan5Jian Huang6Chaojun Ding7Yushan Yang8Jieshun Yang9Haitao Chen10Qingmao Zhang11Sino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaIntelligent Manufacturing and Equipment School, Shenzhen Institute of Information Technology, Shenzhen 518172, ChinaIntelligent Manufacturing and Equipment School, Shenzhen Institute of Information Technology, Shenzhen 518172, ChinaGuangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaSino-German Intelligent Manufacturing School, Shenzhen City Polytechnic, Shenzhen 518116, ChinaGuangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, ChinaFabricating eutectic high-entropy alloys (EHEAs) via selective laser melting (SLM) presents significant potential for advanced structural applications. This study explores the microstructural evolution of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> EHEAs fabricated by SLM under varying laser powers. Electron backscatter diffraction (EBSD) analysis revealed that samples fabricated at 200 W exhibited approximately 70% face-centered-cubic (FCC) and 30% body-centered-cubic (BCC) phases. In comparison, those processed at 160 W showed an increased FCC fraction of 85% with a corresponding reduction in BCC content. Grain size measurements indicated that BCC grains were consistently finer than their FCC counterparts. Thermal simulations demonstrated that higher laser power produced deeper melt pools and broader temperature gradients. By correlating thermal history with phase diagram data, the spatial variation in BCC content was attributed to the differential residence time in the 1350–1100 °C range. This study represents one of the first attempts to quantitatively link local thermal histories with the evolution of dual-phase (FCC + BCC) microstructures in EHEAs during SLM. The findings contribute to the improved understanding and control of phase formation in complex alloy systems, providing valuable guidance for tailoring SLM parameters to optimize the phase composition and microstructure of EHEAs.https://www.mdpi.com/2072-666X/16/6/694high-entropy alloyselective laser meltingthermal simulationmicrostructure evolutionFCCBCC
spellingShingle Xuyun Peng
Xiaojun Tan
Haibing Xiao
Wei Zhang
Liang Guo
Wei Tan
Jian Huang
Chaojun Ding
Yushan Yang
Jieshun Yang
Haitao Chen
Qingmao Zhang
Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy
Micromachines
high-entropy alloy
selective laser melting
thermal simulation
microstructure evolution
FCC
BCC
title Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy
title_full Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy
title_fullStr Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy
title_full_unstemmed Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy
title_short Numerical Simulation of Thermal Fields and Microstructure Evolution in SLM of Fe<sub>32</sub>Cr<sub>33</sub>Ni<sub>29</sub>Al<sub>3</sub>Ti<sub>3</sub> Alloy
title_sort numerical simulation of thermal fields and microstructure evolution in slm of fe sub 32 sub cr sub 33 sub ni sub 29 sub al sub 3 sub ti sub 3 sub alloy
topic high-entropy alloy
selective laser melting
thermal simulation
microstructure evolution
FCC
BCC
url https://www.mdpi.com/2072-666X/16/6/694
work_keys_str_mv AT xuyunpeng numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy
AT xiaojuntan numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy
AT haibingxiao numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy
AT weizhang numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy
AT liangguo numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy
AT weitan numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy
AT jianhuang numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy
AT chaojunding numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy
AT yushanyang numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy
AT jieshunyang numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy
AT haitaochen numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy
AT qingmaozhang numericalsimulationofthermalfieldsandmicrostructureevolutioninslmoffesub32subcrsub33subnisub29subalsub3subtisub3suballoy