An Eighth-Order Numerical Method for Spatial Variable-Coefficient Time-Fractional Convection–Diffusion–Reaction Equations

In this paper, we propose a high-order compact difference scheme for a class of time-fractional convection–diffusion–reaction equations (CDREs) with variable coefficients. Using the Lagrange polynomial interpolation formula for the time-fractional derivative and a compact finite difference approxima...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuelong Feng, Xindong Zhang, Leilei Wei
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/7/451
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we propose a high-order compact difference scheme for a class of time-fractional convection–diffusion–reaction equations (CDREs) with variable coefficients. Using the Lagrange polynomial interpolation formula for the time-fractional derivative and a compact finite difference approximation for the spatial derivative, we establish an unconditionally stable compact difference method. The stability and convergence properties of the method are rigorously analyzed using the Fourier method. The convergence order of our discrete scheme is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>τ</mi><mrow><mn>4</mn><mo>−</mo><mi>α</mi></mrow></msup><mo>+</mo><msup><mi>h</mi><mn>8</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> and <i>h</i> represent the time step size and space step size, respectively. This work contributes to providing a better understanding of the dependability of the method by thoroughly examining convergence and conducting an error analysis. Numerical examples demonstrate the applicability, accuracy, and efficiency of the suggested technique, supplemented by comparisons with previous research.
ISSN:2504-3110