Deconvolving X-Ray Galaxy Cluster Spectra Using a Recurrent Inference Machine

Recent advances in machine learning algorithms have unlocked new insights in observational astronomy by allowing astronomers to probe new frontiers. In this article, we present a methodology to disentangle the intrinsic X-ray spectrum of galaxy clusters from the instrumental response function. Emplo...

Full description

Saved in:
Bibliographic Details
Main Authors: Carter Lee Rhea, Julie Hlavacek-Larrondo, Alexandre Adam, Ralph Kraft, Ákos Bogdán, Laurence Perreault-Levasseur, Marine Prunier
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astronomical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-3881/adbf7b
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850156327369703424
author Carter Lee Rhea
Julie Hlavacek-Larrondo
Alexandre Adam
Ralph Kraft
Ákos Bogdán
Laurence Perreault-Levasseur
Marine Prunier
author_facet Carter Lee Rhea
Julie Hlavacek-Larrondo
Alexandre Adam
Ralph Kraft
Ákos Bogdán
Laurence Perreault-Levasseur
Marine Prunier
author_sort Carter Lee Rhea
collection DOAJ
description Recent advances in machine learning algorithms have unlocked new insights in observational astronomy by allowing astronomers to probe new frontiers. In this article, we present a methodology to disentangle the intrinsic X-ray spectrum of galaxy clusters from the instrumental response function. Employing state-of-the-art modeling software and data mining techniques of the Chandra data archive, we construct a set of 100,000 mock Chandra spectra. We train a Recurrent Inference Machine (RIM) to take in the instrumental response and mock observation and output the intrinsic X-ray spectrum. The RIM can recover the mock intrinsic spectrum below the 1 σ error threshold; moreover, the RIM reconstruction of the mock observations is indistinguishable from the observations themselves. To further test the algorithm, we deconvolve extracted spectra from the central regions of the galaxy group NGC 1550, known to have a rich X-ray spectrum, and the massive galaxy clusters A1795. Despite the RIM reconstructions consistently remaining below the 1 σ noise level, the recovered intrinsic spectra did not align with modeled expectations. This discrepancy is likely attributable to the RIM’s method of implicitly encoding prior information within the neural network. This approach holds promise for unlocking new possibilities in accurate spectral reconstructions and advancing our understanding of complex X-ray cosmic phenomena.
format Article
id doaj-art-486e0b7179a446398331fd491a285f1e
institution OA Journals
issn 1538-3881
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astronomical Journal
spelling doaj-art-486e0b7179a446398331fd491a285f1e2025-08-20T02:24:35ZengIOP PublishingThe Astronomical Journal1538-38812025-01-01169526810.3847/1538-3881/adbf7bDeconvolving X-Ray Galaxy Cluster Spectra Using a Recurrent Inference MachineCarter Lee Rhea0https://orcid.org/0000-0003-2001-1076Julie Hlavacek-Larrondo1https://orcid.org/0000-0001-7271-7340Alexandre Adam2https://orcid.org/0000-0001-8806-7936Ralph Kraft3https://orcid.org/0000-0002-0765-0511Ákos Bogdán4https://orcid.org/0000-0003-0573-7733Laurence Perreault-Levasseur5https://orcid.org/0000-0003-3544-3939Marine Prunier6https://orcid.org/0009-0003-0932-2487Département de Physique, Université de Montréal , Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada ; carterrhea@astro.umontreal; Centre de recherche en astrophysique du Québec (CRAQ) , Canada ​Département de Physique, Université de Montréal , Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada ; carterrhea@astro.umontrealDépartement de Physique, Université de Montréal , Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada ; carterrhea@astro.umontreal; Mila—Quebec Artificial Intelligence Institute , Montreal, Québec, CanadaCenter for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USACenter for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USADépartement de Physique, Université de Montréal , Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada ; carterrhea@astro.umontreal; Mila—Quebec Artificial Intelligence Institute , Montreal, Québec, Canada; Center for Computational Astrophysics, Flatiron Institute , NY, USADépartement de Physique, Université de Montréal , Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada ; carterrhea@astro.umontreal; Centre de recherche en astrophysique du Québec (CRAQ) , Canada ​; Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg, GermanyRecent advances in machine learning algorithms have unlocked new insights in observational astronomy by allowing astronomers to probe new frontiers. In this article, we present a methodology to disentangle the intrinsic X-ray spectrum of galaxy clusters from the instrumental response function. Employing state-of-the-art modeling software and data mining techniques of the Chandra data archive, we construct a set of 100,000 mock Chandra spectra. We train a Recurrent Inference Machine (RIM) to take in the instrumental response and mock observation and output the intrinsic X-ray spectrum. The RIM can recover the mock intrinsic spectrum below the 1 σ error threshold; moreover, the RIM reconstruction of the mock observations is indistinguishable from the observations themselves. To further test the algorithm, we deconvolve extracted spectra from the central regions of the galaxy group NGC 1550, known to have a rich X-ray spectrum, and the massive galaxy clusters A1795. Despite the RIM reconstructions consistently remaining below the 1 σ noise level, the recovered intrinsic spectra did not align with modeled expectations. This discrepancy is likely attributable to the RIM’s method of implicitly encoding prior information within the neural network. This approach holds promise for unlocking new possibilities in accurate spectral reconstructions and advancing our understanding of complex X-ray cosmic phenomena.https://doi.org/10.3847/1538-3881/adbf7bGalaxy clustersGalactic and extragalactic astronomy
spellingShingle Carter Lee Rhea
Julie Hlavacek-Larrondo
Alexandre Adam
Ralph Kraft
Ákos Bogdán
Laurence Perreault-Levasseur
Marine Prunier
Deconvolving X-Ray Galaxy Cluster Spectra Using a Recurrent Inference Machine
The Astronomical Journal
Galaxy clusters
Galactic and extragalactic astronomy
title Deconvolving X-Ray Galaxy Cluster Spectra Using a Recurrent Inference Machine
title_full Deconvolving X-Ray Galaxy Cluster Spectra Using a Recurrent Inference Machine
title_fullStr Deconvolving X-Ray Galaxy Cluster Spectra Using a Recurrent Inference Machine
title_full_unstemmed Deconvolving X-Ray Galaxy Cluster Spectra Using a Recurrent Inference Machine
title_short Deconvolving X-Ray Galaxy Cluster Spectra Using a Recurrent Inference Machine
title_sort deconvolving x ray galaxy cluster spectra using a recurrent inference machine
topic Galaxy clusters
Galactic and extragalactic astronomy
url https://doi.org/10.3847/1538-3881/adbf7b
work_keys_str_mv AT carterleerhea deconvolvingxraygalaxyclusterspectrausingarecurrentinferencemachine
AT juliehlavaceklarrondo deconvolvingxraygalaxyclusterspectrausingarecurrentinferencemachine
AT alexandreadam deconvolvingxraygalaxyclusterspectrausingarecurrentinferencemachine
AT ralphkraft deconvolvingxraygalaxyclusterspectrausingarecurrentinferencemachine
AT akosbogdan deconvolvingxraygalaxyclusterspectrausingarecurrentinferencemachine
AT laurenceperreaultlevasseur deconvolvingxraygalaxyclusterspectrausingarecurrentinferencemachine
AT marineprunier deconvolvingxraygalaxyclusterspectrausingarecurrentinferencemachine