Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics
Exosomes are nanoscale extracellular vesicles (EVs) that carry biomolecular signatures reflective of their parent cells, making them powerful tools for non-invasive diagnostics and therapeutic monitoring. Despite their potential, clinical application is hindered by challenges such as low abundance,...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Nanomaterials |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4991/15/15/1153 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849765941246689280 |
|---|---|
| author | Seungah Lee Nayra A. M. Moussa Seong Ho Kang |
| author_facet | Seungah Lee Nayra A. M. Moussa Seong Ho Kang |
| author_sort | Seungah Lee |
| collection | DOAJ |
| description | Exosomes are nanoscale extracellular vesicles (EVs) that carry biomolecular signatures reflective of their parent cells, making them powerful tools for non-invasive diagnostics and therapeutic monitoring. Despite their potential, clinical application is hindered by challenges such as low abundance, heterogeneity, and the complexity of biological samples. To address these limitations, plasmonic biosensing technologies—particularly propagating surface plasmon resonance (PSPR), localized surface plasmon resonance (LSPR), and surface-enhanced Raman scattering (SERS)—have been developed to enable label-free, highly sensitive, and multiplexed detection at the single-vesicle level. This review outlines recent advancements in nanoplasmonic platforms for exosome detection and profiling, emphasizing innovations in nanostructure engineering, microfluidic integration, and signal enhancement. Representative applications in oncology, neurology, and immunology are discussed, along with the increasingly critical role of artificial intelligence (AI) in spectral interpretation and diagnostic classification. Key technical and translational challenges—such as assay standardization, substrate reproducibility, and clinical validation—are also addressed. Overall, this review highlights the synergy between exosome biology and plasmonic nanotechnology, offering a path toward real-time, precision diagnostics via sub-femtomolar detection of exosomal miRNAs through next-generation biosensing strategies. |
| format | Article |
| id | doaj-art-4844d90024e94c4fbd4f895fd3f6fc3c |
| institution | DOAJ |
| issn | 2079-4991 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Nanomaterials |
| spelling | doaj-art-4844d90024e94c4fbd4f895fd3f6fc3c2025-08-20T03:04:43ZengMDPI AGNanomaterials2079-49912025-07-011515115310.3390/nano15151153Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity DiagnosticsSeungah Lee0Nayra A. M. Moussa1Seong Ho Kang2Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of KoreaDepartment of Chemistry, Graduate School, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of KoreaDepartment of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of KoreaExosomes are nanoscale extracellular vesicles (EVs) that carry biomolecular signatures reflective of their parent cells, making them powerful tools for non-invasive diagnostics and therapeutic monitoring. Despite their potential, clinical application is hindered by challenges such as low abundance, heterogeneity, and the complexity of biological samples. To address these limitations, plasmonic biosensing technologies—particularly propagating surface plasmon resonance (PSPR), localized surface plasmon resonance (LSPR), and surface-enhanced Raman scattering (SERS)—have been developed to enable label-free, highly sensitive, and multiplexed detection at the single-vesicle level. This review outlines recent advancements in nanoplasmonic platforms for exosome detection and profiling, emphasizing innovations in nanostructure engineering, microfluidic integration, and signal enhancement. Representative applications in oncology, neurology, and immunology are discussed, along with the increasingly critical role of artificial intelligence (AI) in spectral interpretation and diagnostic classification. Key technical and translational challenges—such as assay standardization, substrate reproducibility, and clinical validation—are also addressed. Overall, this review highlights the synergy between exosome biology and plasmonic nanotechnology, offering a path toward real-time, precision diagnostics via sub-femtomolar detection of exosomal miRNAs through next-generation biosensing strategies.https://www.mdpi.com/2079-4991/15/15/1153exosomenanoplasmonic biosensorspropagating surface plasmon resonancelocalized surface plasmon resonancesurface-enhanced Raman scatteringhigh-sensitivity diagnostics |
| spellingShingle | Seungah Lee Nayra A. M. Moussa Seong Ho Kang Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics Nanomaterials exosome nanoplasmonic biosensors propagating surface plasmon resonance localized surface plasmon resonance surface-enhanced Raman scattering high-sensitivity diagnostics |
| title | Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics |
| title_full | Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics |
| title_fullStr | Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics |
| title_full_unstemmed | Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics |
| title_short | Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics |
| title_sort | plasmonic nanostructures for exosome biosensing enabling high sensitivity diagnostics |
| topic | exosome nanoplasmonic biosensors propagating surface plasmon resonance localized surface plasmon resonance surface-enhanced Raman scattering high-sensitivity diagnostics |
| url | https://www.mdpi.com/2079-4991/15/15/1153 |
| work_keys_str_mv | AT seungahlee plasmonicnanostructuresforexosomebiosensingenablinghighsensitivitydiagnostics AT nayraammoussa plasmonicnanostructuresforexosomebiosensingenablinghighsensitivitydiagnostics AT seonghokang plasmonicnanostructuresforexosomebiosensingenablinghighsensitivitydiagnostics |