Urban rail transit resilience under different operation schemes: A percolation-based approach

To assess the resilience of urban rail transit (URT) systems under various operational conditions accurately and enhance their operation, this study develops a percolation model for nonfree flow transportation networks on the basis of percolation theory, which integrates multisource information and...

Full description

Saved in:
Bibliographic Details
Main Authors: Tianlei Zhu, Xin Yang, Yun Wei, Anthony Chen, Jianjun Wu
Format: Article
Language:English
Published: Elsevier 2025-12-01
Series:Communications in Transportation Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772424725000174
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To assess the resilience of urban rail transit (URT) systems under various operational conditions accurately and enhance their operation, this study develops a percolation model for nonfree flow transportation networks on the basis of percolation theory, which integrates multisource information and operational characteristics. Our model accounts for the state evolution of different hierarchical structures within the network and identifies nonlinear features. Specifically, we observed significant percolation transitions in the URT network, with distinct differences in critical percolation thresholds at different times, leading to multistate behavior. Network bottlenecks spatially shift with network phase transitions, exhibiting power-law frequency characteristics. On the basis of the full-day resilience assessment results, we analyzed the impact of different operational schemes on network resilience during the morning peak, the period with the lowest resilience. The results demonstrate that our resilience analysis framework effectively evaluates URT network resilience, providing theoretical support for enhancing operational management efficiency and accident prevention measures.
ISSN:2772-4247