Increasing the Construct Validity of Computational Phenotypes of Mental Illness Through Active Inference and Brain Imaging

After more than 30 years since its inception, the utility of brain imaging for understanding and diagnosing mental illnesses is in doubt, receiving well-grounded criticisms from clinical practitioners. Symptom-based correlational approaches have struggled to provide psychiatry with reliable brain-im...

Full description

Saved in:
Bibliographic Details
Main Authors: Roberto Limongi, Alexandra B. Skelton, Lydia H. Tzianas, Angelica M. Silva
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Brain Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3425/14/12/1278
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:After more than 30 years since its inception, the utility of brain imaging for understanding and diagnosing mental illnesses is in doubt, receiving well-grounded criticisms from clinical practitioners. Symptom-based correlational approaches have struggled to provide psychiatry with reliable brain-imaging metrics. However, the emergence of computational psychiatry has paved a new path not only for understanding the psychopathology of mental illness but also to provide practical tools for clinical practice in terms of computational metrics, specifically computational phenotypes. However, these phenotypes still lack sufficient test–retest reliability. In this review, we describe recent works revealing that mind and brain-related computational phenotypes show structural (not random) variation over time, longitudinal changes. Furthermore, we show that these findings suggest that understanding the causes of these changes will improve the construct validity of the phenotypes with an ensuing increase in test–retest reliability. We propose that the active inference framework offers a general-purpose approach for causally understanding these longitudinal changes by incorporating brain imaging as observations within partially observable Markov decision processes.
ISSN:2076-3425