Physiological Benefits, Applications, and Future Directions of β-Hydroxy-β-Methylbutyrate (HMB) in Food and Health Industries
β-Hydroxy-β-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, is acknowledged for its powerful role in facilitating muscle protein synthesis, reducing muscle catabolism, and promoting fat-free mass accumulation. With well-documented anticatabolic, anabolic, and lipolytic effect...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Foods |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-8158/14/8/1294 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | β-Hydroxy-β-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, is acknowledged for its powerful role in facilitating muscle protein synthesis, reducing muscle catabolism, and promoting fat-free mass accumulation. With well-documented anticatabolic, anabolic, and lipolytic effects, HMB has been extensively studied in clinical settings and has exhibited potential in mitigating muscle loss induced by aging, cancer cachexia, and sarcopenia. Moreover, HMB finds applications in specialized medical nutrition, sports nutrition, and animal husbandry, with recent research illustrating its benefits in enhancing animal growth and immunity. This review highlights the current understanding of HMB’s physiological mechanisms, its diverse applications, and recent advancements in detection methods such as High-Performance Liquid Chromatography (HPLC), Gas Chromatography (GC), and Liquid Chromatography–Mass Spectrometry (LC–MS). Additionally, it discusses the future prospects of HMB bio-manufacturing. The establishment of standardized guidelines for its safe use and testing is crucial for its broader adoption in the food industry. Future research should focus on further elucidating HMB’s muscle growth mechanisms and broadening its applications across the food, health, and agricultural sectors. In sum, future studies should prioritize mechanistic exploration, safety and synergy, along with standardization to fully harness HMB’s potential. |
|---|---|
| ISSN: | 2304-8158 |