A Numerical Investigation of Sinusoidal Flow in Porous Media with a Simple Cubic Beam Structure at 1 Hz and 100 Hz Under Different Porosity Conditions

This study aims to clarify how porosity and frequency interact to influence permeability and flow behavior in porous media subjected to sinusoidal pressure variations. Specifically, we investigate oscillatory flow at 1 Hz and 100 Hz under varying porosity conditions using a pore-scale Computational...

Full description

Saved in:
Bibliographic Details
Main Authors: Sin-Mao Chen, Boe-Shong Hong, Shiuh-Hwa Shyu
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/10/5/126
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849710900450164736
author Sin-Mao Chen
Boe-Shong Hong
Shiuh-Hwa Shyu
author_facet Sin-Mao Chen
Boe-Shong Hong
Shiuh-Hwa Shyu
author_sort Sin-Mao Chen
collection DOAJ
description This study aims to clarify how porosity and frequency interact to influence permeability and flow behavior in porous media subjected to sinusoidal pressure variations. Specifically, we investigate oscillatory flow at 1 Hz and 100 Hz under varying porosity conditions using a pore-scale Computational Fluid Dynamics (CFD) model. The model is validated against the Johnson–Koplik–Dashen (JKD) model to ensure accuracy in capturing dynamic permeability. At 1 Hz, where the oscillation period greatly exceeds the system’s time constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi></mrow></semantics></math></inline-formula>, the flow reaches a quasi-steady state with dynamic permeability approximating static permeability. Increasing porosity enhances Darcy velocity, with minimal phase difference between velocity and pressure. At 100 Hz, flow behavior depends on the ratio of the oscillation period <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi></mrow></semantics></math></inline-formula>. For high porosity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>φ</mi><mo>=</mo><mn>0.840</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>≈</mo><mi>τ</mi></mrow></semantics></math></inline-formula>), the flow does not fully develop before the pressure gradient reverses, leading to significant phase lag. For low porosity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>φ</mi><mo>=</mo><mn>0.370</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>≈</mo><mn>12</mn><mi>τ</mi></mrow></semantics></math></inline-formula>), the phase lag is smaller but remains non-zero due to the smooth temporal variation in pressure. This work contributes to the understanding of porous flow dynamics by revealing how porosity modulates both the amplitude and phase angle of dynamic permeability in frequency-dependent porous flows, providing a framework for predicting phase lag in frequency-sensitive applications.
format Article
id doaj-art-47ebd076342c4fc4a2094f17ac472bea
institution DOAJ
issn 2311-5521
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Fluids
spelling doaj-art-47ebd076342c4fc4a2094f17ac472bea2025-08-20T03:14:46ZengMDPI AGFluids2311-55212025-05-0110512610.3390/fluids10050126A Numerical Investigation of Sinusoidal Flow in Porous Media with a Simple Cubic Beam Structure at 1 Hz and 100 Hz Under Different Porosity ConditionsSin-Mao Chen0Boe-Shong Hong1Shiuh-Hwa Shyu2Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi 621, TaiwanDepartment of Mechanical Engineering, National Chung Cheng University, Chia-Yi 621, TaiwanDepartment of Vehicle Engineering, WuFeng University, Chia-Yi 621, TaiwanThis study aims to clarify how porosity and frequency interact to influence permeability and flow behavior in porous media subjected to sinusoidal pressure variations. Specifically, we investigate oscillatory flow at 1 Hz and 100 Hz under varying porosity conditions using a pore-scale Computational Fluid Dynamics (CFD) model. The model is validated against the Johnson–Koplik–Dashen (JKD) model to ensure accuracy in capturing dynamic permeability. At 1 Hz, where the oscillation period greatly exceeds the system’s time constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi></mrow></semantics></math></inline-formula>, the flow reaches a quasi-steady state with dynamic permeability approximating static permeability. Increasing porosity enhances Darcy velocity, with minimal phase difference between velocity and pressure. At 100 Hz, flow behavior depends on the ratio of the oscillation period <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi></mrow></semantics></math></inline-formula>. For high porosity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>φ</mi><mo>=</mo><mn>0.840</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>≈</mo><mi>τ</mi></mrow></semantics></math></inline-formula>), the flow does not fully develop before the pressure gradient reverses, leading to significant phase lag. For low porosity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>φ</mi><mo>=</mo><mn>0.370</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>≈</mo><mn>12</mn><mi>τ</mi></mrow></semantics></math></inline-formula>), the phase lag is smaller but remains non-zero due to the smooth temporal variation in pressure. This work contributes to the understanding of porous flow dynamics by revealing how porosity modulates both the amplitude and phase angle of dynamic permeability in frequency-dependent porous flows, providing a framework for predicting phase lag in frequency-sensitive applications.https://www.mdpi.com/2311-5521/10/5/126porous mediapermeabilitysinusoidal flowsimple cubic structurefrequency-dependent behavior
spellingShingle Sin-Mao Chen
Boe-Shong Hong
Shiuh-Hwa Shyu
A Numerical Investigation of Sinusoidal Flow in Porous Media with a Simple Cubic Beam Structure at 1 Hz and 100 Hz Under Different Porosity Conditions
Fluids
porous media
permeability
sinusoidal flow
simple cubic structure
frequency-dependent behavior
title A Numerical Investigation of Sinusoidal Flow in Porous Media with a Simple Cubic Beam Structure at 1 Hz and 100 Hz Under Different Porosity Conditions
title_full A Numerical Investigation of Sinusoidal Flow in Porous Media with a Simple Cubic Beam Structure at 1 Hz and 100 Hz Under Different Porosity Conditions
title_fullStr A Numerical Investigation of Sinusoidal Flow in Porous Media with a Simple Cubic Beam Structure at 1 Hz and 100 Hz Under Different Porosity Conditions
title_full_unstemmed A Numerical Investigation of Sinusoidal Flow in Porous Media with a Simple Cubic Beam Structure at 1 Hz and 100 Hz Under Different Porosity Conditions
title_short A Numerical Investigation of Sinusoidal Flow in Porous Media with a Simple Cubic Beam Structure at 1 Hz and 100 Hz Under Different Porosity Conditions
title_sort numerical investigation of sinusoidal flow in porous media with a simple cubic beam structure at 1 hz and 100 hz under different porosity conditions
topic porous media
permeability
sinusoidal flow
simple cubic structure
frequency-dependent behavior
url https://www.mdpi.com/2311-5521/10/5/126
work_keys_str_mv AT sinmaochen anumericalinvestigationofsinusoidalflowinporousmediawithasimplecubicbeamstructureat1hzand100hzunderdifferentporosityconditions
AT boeshonghong anumericalinvestigationofsinusoidalflowinporousmediawithasimplecubicbeamstructureat1hzand100hzunderdifferentporosityconditions
AT shiuhhwashyu anumericalinvestigationofsinusoidalflowinporousmediawithasimplecubicbeamstructureat1hzand100hzunderdifferentporosityconditions
AT sinmaochen numericalinvestigationofsinusoidalflowinporousmediawithasimplecubicbeamstructureat1hzand100hzunderdifferentporosityconditions
AT boeshonghong numericalinvestigationofsinusoidalflowinporousmediawithasimplecubicbeamstructureat1hzand100hzunderdifferentporosityconditions
AT shiuhhwashyu numericalinvestigationofsinusoidalflowinporousmediawithasimplecubicbeamstructureat1hzand100hzunderdifferentporosityconditions