Some Comments on Rigorous Finite-Volume Euclidean Quantum Field Path Integrals in the Analytical Regularization Scheme

Through the systematic use of the Minlos theorem on the support of cylindrical measures on 𝑅∞, we produce several mathematically rigorous finite-volume euclidean path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of finite-volume Laplacia...

Full description

Saved in:
Bibliographic Details
Main Author: Luiz C. L. Botelho
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2011/257916
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832547074925658112
author Luiz C. L. Botelho
author_facet Luiz C. L. Botelho
author_sort Luiz C. L. Botelho
collection DOAJ
description Through the systematic use of the Minlos theorem on the support of cylindrical measures on 𝑅∞, we produce several mathematically rigorous finite-volume euclidean path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of finite-volume Laplacian operator.
format Article
id doaj-art-479d21af34114cb58db2bb85f4b4ca30
institution Kabale University
issn 1687-9120
1687-9139
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series Advances in Mathematical Physics
spelling doaj-art-479d21af34114cb58db2bb85f4b4ca302025-02-03T06:46:11ZengWileyAdvances in Mathematical Physics1687-91201687-91392011-01-01201110.1155/2011/257916257916Some Comments on Rigorous Finite-Volume Euclidean Quantum Field Path Integrals in the Analytical Regularization SchemeLuiz C. L. Botelho0Departamento de Matemática Aplicada, Instituto de Matemática, Universidade Federal Fluminense, Rua Mario Santos Braga, 24220-140 Niterói, RJ, BrazilThrough the systematic use of the Minlos theorem on the support of cylindrical measures on 𝑅∞, we produce several mathematically rigorous finite-volume euclidean path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of finite-volume Laplacian operator.http://dx.doi.org/10.1155/2011/257916
spellingShingle Luiz C. L. Botelho
Some Comments on Rigorous Finite-Volume Euclidean Quantum Field Path Integrals in the Analytical Regularization Scheme
Advances in Mathematical Physics
title Some Comments on Rigorous Finite-Volume Euclidean Quantum Field Path Integrals in the Analytical Regularization Scheme
title_full Some Comments on Rigorous Finite-Volume Euclidean Quantum Field Path Integrals in the Analytical Regularization Scheme
title_fullStr Some Comments on Rigorous Finite-Volume Euclidean Quantum Field Path Integrals in the Analytical Regularization Scheme
title_full_unstemmed Some Comments on Rigorous Finite-Volume Euclidean Quantum Field Path Integrals in the Analytical Regularization Scheme
title_short Some Comments on Rigorous Finite-Volume Euclidean Quantum Field Path Integrals in the Analytical Regularization Scheme
title_sort some comments on rigorous finite volume euclidean quantum field path integrals in the analytical regularization scheme
url http://dx.doi.org/10.1155/2011/257916
work_keys_str_mv AT luizclbotelho somecommentsonrigorousfinitevolumeeuclideanquantumfieldpathintegralsintheanalyticalregularizationscheme