Hard Carbon as Anodes for Potassium-Ion Batteries: Developments and Prospects
Potassium-ion batteries (PIBs) are regarded as a potential substitute for LIBs owing to the benefits of potassium’s abundance, low cost, and high safety. Nonetheless, the practical implementation of potassium-ion batteries still encounters numerous challenges, with the selection and design of anode...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-11-01
|
| Series: | Inorganics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-6740/12/12/302 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Potassium-ion batteries (PIBs) are regarded as a potential substitute for LIBs owing to the benefits of potassium’s abundance, low cost, and high safety. Nonetheless, the practical implementation of potassium-ion batteries still encounters numerous challenges, with the selection and design of anode materials standing out as a key factor impeding their progress. Hard carbon, characterized by its amorphous structure, high specific surface area, and well-developed pore structure, facilitates the insertion/extraction of potassium ions, demonstrating excellent rate performance and cycling stability. This review synthesizes the recent advancements in hard carbon materials utilized in PIB anodes, with a particular focus on the potassium storage mechanism, electrochemical properties, and modification strategies of hard carbon. Ultimately, we present a summary of the current challenges and future development directions of hard carbon materials, with the objective of providing a reference for the design and optimization of hard carbon materials for PIBs. |
|---|---|
| ISSN: | 2304-6740 |