On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables

Let $M_q(H_{\mathbb{R}})$ be the $q$-Gaussian von Neumann algebra associated with a separable infinite dimensional real Hilbert space $H_{\mathbb{R}}$ where $-1 < q < 1$. We show that $M_q(H_{\mathbb{R}}) \lnot \simeq M_0(H_{\mathbb{R}})$ for $-1 < q \ne 0 < 1$. The C$^\ast $-algebraic...

Full description

Saved in:
Bibliographic Details
Main Author: Caspers, Martijn
Format: Article
Language:English
Published: Académie des sciences 2023-12-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.489/
Tags: Add Tag
No Tags, Be the first to tag this record!