Anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturing

Technological advances, especially in the industrial field, have led to the development and optimization of the activities that takes place on it. To achieve this goal, an early detection of any kind of anomaly is very important. This can contribute to energy and economic savings and an environmenta...

Full description

Saved in:
Bibliographic Details
Main Authors: E. Jove, J. Casteleiro-Roca, H. Quintián, J. A. Méndez-Pérez, J. L. Calvo-Rolle
Format: Article
Language:Spanish
Published: Universitat Politècnica de València 2020-01-01
Series:Revista Iberoamericana de Automática e Informática Industrial RIAI
Subjects:
Online Access:https://polipapers.upv.es/index.php/RIAI/article/view/11055
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846146510508523520
author E. Jove
J. Casteleiro-Roca
H. Quintián
J. A. Méndez-Pérez
J. L. Calvo-Rolle
author_facet E. Jove
J. Casteleiro-Roca
H. Quintián
J. A. Méndez-Pérez
J. L. Calvo-Rolle
author_sort E. Jove
collection DOAJ
description Technological advances, especially in the industrial field, have led to the development and optimization of the activities that takes place on it. To achieve this goal, an early detection of any kind of anomaly is very important. This can contribute to energy and economic savings and an environmental impact reduction. In a context where the reduction of pollution gasses emission is promoted, the use of alternative energies, specially the wind energy, plays a key role. The wind generator blades are usually manufactured from bicomponent material, obtained from the mixture of two dierent primary components. The present research assesses dierent one-class intelligent techniques to perform anomaly detection on a bicomponent mixing system used on the wind generator manufacturing. To perform the anomaly detection, the intelligent models were obtained from real dataset recorded during the right operation of a bicomponent mixing plant. The classifiers for each technique were validated using artificial outliers, achieving very good results.
format Article
id doaj-art-47335347ba4d48759a8a6f54bbe2198c
institution Kabale University
issn 1697-7912
1697-7920
language Spanish
publishDate 2020-01-01
publisher Universitat Politècnica de València
record_format Article
series Revista Iberoamericana de Automática e Informática Industrial RIAI
spelling doaj-art-47335347ba4d48759a8a6f54bbe2198c2024-12-02T02:38:12ZspaUniversitat Politècnica de ValènciaRevista Iberoamericana de Automática e Informática Industrial RIAI1697-79121697-79202020-01-01171849310.4995/riai.2019.110557621Anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturingE. Jove0J. Casteleiro-Roca1H. Quintián2J. A. Méndez-Pérez3J. L. Calvo-Rolle4Univesidade da Coruña,Univesidade da CoruñaUnivesidade da CoruñaUniversidad de La LagunaUnivesidade da CoruñaTechnological advances, especially in the industrial field, have led to the development and optimization of the activities that takes place on it. To achieve this goal, an early detection of any kind of anomaly is very important. This can contribute to energy and economic savings and an environmental impact reduction. In a context where the reduction of pollution gasses emission is promoted, the use of alternative energies, specially the wind energy, plays a key role. The wind generator blades are usually manufactured from bicomponent material, obtained from the mixture of two dierent primary components. The present research assesses dierent one-class intelligent techniques to perform anomaly detection on a bicomponent mixing system used on the wind generator manufacturing. To perform the anomaly detection, the intelligent models were obtained from real dataset recorded during the right operation of a bicomponent mixing plant. The classifiers for each technique were validated using artificial outliers, achieving very good results.https://polipapers.upv.es/index.php/RIAI/article/view/11055sistemas de energías renovablesaerogeneradoresdetección de anomalíasdiagnóstico de sistemasredes neuronales
spellingShingle E. Jove
J. Casteleiro-Roca
H. Quintián
J. A. Méndez-Pérez
J. L. Calvo-Rolle
Anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturing
Revista Iberoamericana de Automática e Informática Industrial RIAI
sistemas de energías renovables
aerogeneradores
detección de anomalías
diagnóstico de sistemas
redes neuronales
title Anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturing
title_full Anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturing
title_fullStr Anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturing
title_full_unstemmed Anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturing
title_short Anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturing
title_sort anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturing
topic sistemas de energías renovables
aerogeneradores
detección de anomalías
diagnóstico de sistemas
redes neuronales
url https://polipapers.upv.es/index.php/RIAI/article/view/11055
work_keys_str_mv AT ejove anomalydetectionbasedonintelligenttechniquesoverabicomponentproductionplantusedonwindgeneratorbladesmanufacturing
AT jcasteleiroroca anomalydetectionbasedonintelligenttechniquesoverabicomponentproductionplantusedonwindgeneratorbladesmanufacturing
AT hquintian anomalydetectionbasedonintelligenttechniquesoverabicomponentproductionplantusedonwindgeneratorbladesmanufacturing
AT jamendezperez anomalydetectionbasedonintelligenttechniquesoverabicomponentproductionplantusedonwindgeneratorbladesmanufacturing
AT jlcalvorolle anomalydetectionbasedonintelligenttechniquesoverabicomponentproductionplantusedonwindgeneratorbladesmanufacturing