Selective Reviews of Bandit Problems in AI via a Statistical View
Reinforcement Learning (RL) is a widely researched area in artificial intelligence that focuses on teaching agents decision-making through interactions with their environment. A key subset includes multi-armed bandit (MAB) and stochastic continuum-armed bandit (SCAB) problems, which model sequential...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/4/665 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Reinforcement Learning (RL) is a widely researched area in artificial intelligence that focuses on teaching agents decision-making through interactions with their environment. A key subset includes multi-armed bandit (MAB) and stochastic continuum-armed bandit (SCAB) problems, which model sequential decision-making under uncertainty. This review outlines the foundational models and assumptions of bandit problems, explores non-asymptotic theoretical tools like concentration inequalities and minimax regret bounds, and compares frequentist and Bayesian algorithms for managing exploration–exploitation trade-offs. Additionally, we explore <i>K</i>-armed contextual bandits and SCAB, focusing on their methodologies and regret analyses. We also examine the connections between SCAB problems and functional data analysis. Finally, we highlight recent advances and ongoing challenges in the field. |
|---|---|
| ISSN: | 2227-7390 |