Common Neighborhood Energy of the Non-Commuting Graphs and Commuting Graphs Associated with Dihedral and Generalized Quaternion Groups

This paper explores the common neighborhood energy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mrow><mi>C</mi><mi>N</mi></mrow>&l...

Full description

Saved in:
Bibliographic Details
Main Authors: Hanaa Alashwali, Anwar Saleh
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/11/1834
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849721789743104000
author Hanaa Alashwali
Anwar Saleh
author_facet Hanaa Alashwali
Anwar Saleh
author_sort Hanaa Alashwali
collection DOAJ
description This paper explores the common neighborhood energy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mrow><mi>C</mi><mi>N</mi></mrow></msub><mrow><mo>(</mo><mi mathvariant="sans-serif">Γ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) of graphs derived from the dihedral group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mrow><mn>2</mn><mi>n</mi></mrow></msub></semantics></math></inline-formula> and generalized quaternion group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Q</mi><mrow><mn>4</mn><mi>n</mi></mrow></msub></semantics></math></inline-formula>, specifically the non-commuting graph (NCM-graph) and the commuting graph (CM-graph). Studying graphs associated with groups offers a powerful approach to translating algebraic properties into combinatorial structures, enabling the application of graph-theoretic tools to understand group behavior. The common neighborhood energy, defined as the sum of the absolute values of the eigenvalues of the common neighborhood (CN) matrix, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></msubsup><mrow><mo>|</mo><msub><mi>ζ</mi><mi>i</mi></msub><mo>|</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>ζ</mi><mi>i</mi></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></msubsup></semantics></math></inline-formula> are the CN eigenvalues, provides insights into the structural properties of these graphs. We derive explicit formulas for the CN characteristic polynomials and corresponding CN eigenvalues for both the NCM-graph and CM-graph as functions of <i>n</i>. Consequently, we establish closed-form expressions for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mrow><mi>C</mi><mi>N</mi></mrow></msub></semantics></math></inline-formula> of these graphs, which are parameterized by <i>n</i>. The validity of our theoretical results is confirmed through computational examples. This study contributes to the spectral analysis of algebraic graphs, demonstrating a direct connection between the group-theoretic structure of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mrow><mn>2</mn><mi>n</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Q</mi><mrow><mn>4</mn><mi>n</mi></mrow></msub></semantics></math></inline-formula>, as well as the combinatorial energy of their associated graphs, thus furthering the understanding of group properties through spectral graph theory.
format Article
id doaj-art-46fb7b608cf74e37b34605b611c41dbb
institution DOAJ
issn 2227-7390
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-46fb7b608cf74e37b34605b611c41dbb2025-08-20T03:11:32ZengMDPI AGMathematics2227-73902025-05-011311183410.3390/math13111834Common Neighborhood Energy of the Non-Commuting Graphs and Commuting Graphs Associated with Dihedral and Generalized Quaternion GroupsHanaa Alashwali0Anwar Saleh1Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi ArabiaDepartment of Mathematics and Statistics, College of Science, University of Jeddah, Jeddah 23218, Saudi ArabiaThis paper explores the common neighborhood energy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mrow><mi>C</mi><mi>N</mi></mrow></msub><mrow><mo>(</mo><mi mathvariant="sans-serif">Γ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) of graphs derived from the dihedral group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mrow><mn>2</mn><mi>n</mi></mrow></msub></semantics></math></inline-formula> and generalized quaternion group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Q</mi><mrow><mn>4</mn><mi>n</mi></mrow></msub></semantics></math></inline-formula>, specifically the non-commuting graph (NCM-graph) and the commuting graph (CM-graph). Studying graphs associated with groups offers a powerful approach to translating algebraic properties into combinatorial structures, enabling the application of graph-theoretic tools to understand group behavior. The common neighborhood energy, defined as the sum of the absolute values of the eigenvalues of the common neighborhood (CN) matrix, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></msubsup><mrow><mo>|</mo><msub><mi>ζ</mi><mi>i</mi></msub><mo>|</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>ζ</mi><mi>i</mi></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></msubsup></semantics></math></inline-formula> are the CN eigenvalues, provides insights into the structural properties of these graphs. We derive explicit formulas for the CN characteristic polynomials and corresponding CN eigenvalues for both the NCM-graph and CM-graph as functions of <i>n</i>. Consequently, we establish closed-form expressions for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mrow><mi>C</mi><mi>N</mi></mrow></msub></semantics></math></inline-formula> of these graphs, which are parameterized by <i>n</i>. The validity of our theoretical results is confirmed through computational examples. This study contributes to the spectral analysis of algebraic graphs, demonstrating a direct connection between the group-theoretic structure of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mrow><mn>2</mn><mi>n</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Q</mi><mrow><mn>4</mn><mi>n</mi></mrow></msub></semantics></math></inline-formula>, as well as the combinatorial energy of their associated graphs, thus furthering the understanding of group properties through spectral graph theory.https://www.mdpi.com/2227-7390/13/11/1834CN energyNCM-graphCM-graphdihedral groupsgeneralized quaternion groups
spellingShingle Hanaa Alashwali
Anwar Saleh
Common Neighborhood Energy of the Non-Commuting Graphs and Commuting Graphs Associated with Dihedral and Generalized Quaternion Groups
Mathematics
CN energy
NCM-graph
CM-graph
dihedral groups
generalized quaternion groups
title Common Neighborhood Energy of the Non-Commuting Graphs and Commuting Graphs Associated with Dihedral and Generalized Quaternion Groups
title_full Common Neighborhood Energy of the Non-Commuting Graphs and Commuting Graphs Associated with Dihedral and Generalized Quaternion Groups
title_fullStr Common Neighborhood Energy of the Non-Commuting Graphs and Commuting Graphs Associated with Dihedral and Generalized Quaternion Groups
title_full_unstemmed Common Neighborhood Energy of the Non-Commuting Graphs and Commuting Graphs Associated with Dihedral and Generalized Quaternion Groups
title_short Common Neighborhood Energy of the Non-Commuting Graphs and Commuting Graphs Associated with Dihedral and Generalized Quaternion Groups
title_sort common neighborhood energy of the non commuting graphs and commuting graphs associated with dihedral and generalized quaternion groups
topic CN energy
NCM-graph
CM-graph
dihedral groups
generalized quaternion groups
url https://www.mdpi.com/2227-7390/13/11/1834
work_keys_str_mv AT hanaaalashwali commonneighborhoodenergyofthenoncommutinggraphsandcommutinggraphsassociatedwithdihedralandgeneralizedquaterniongroups
AT anwarsaleh commonneighborhoodenergyofthenoncommutinggraphsandcommutinggraphsassociatedwithdihedralandgeneralizedquaterniongroups