Mitochondrial transplantation: a promising strategy for the treatment of retinal degenerative diseases
The retina, a crucial neural tissue, is responsible for transforming light signals into visual information, a process that necessitates a significant amount of energy. Mitochondria, the primary powerhouses of the cell, play an integral role in retinal physiology by fulfilling the high-energy require...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer Medknow Publications
2025-12-01
|
Series: | Neural Regeneration Research |
Subjects: | |
Online Access: | https://journals.lww.com/10.4103/NRR.NRR-D-24-00851 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832086640186621952 |
---|---|
author | Jing Chi Bin Fan Yulin Li Qing Jiao Guang-Yu Li |
author_facet | Jing Chi Bin Fan Yulin Li Qing Jiao Guang-Yu Li |
author_sort | Jing Chi |
collection | DOAJ |
description | The retina, a crucial neural tissue, is responsible for transforming light signals into visual information, a process that necessitates a significant amount of energy. Mitochondria, the primary powerhouses of the cell, play an integral role in retinal physiology by fulfilling the high-energy requirements of photoreceptors and secondary neurons through oxidative phosphorylation. In a healthy state, mitochondria ensure proper visual function by facilitating efficient conversion and transduction of visual signals. However, in retinal degenerative diseases, mitochondrial dysfunction significantly contributes to disease progression, involving a decline in membrane potential, the occurrence of DNA mutations, increased oxidative stress, and imbalances in quality-control mechanisms. These abnormalities lead to an inadequate energy supply, the exacerbation of oxidative damage, and the activation of cell death pathways, ultimately resulting in neuronal injury and dysfunction in the retina. Mitochondrial transplantation has emerged as a promising strategy for addressing these challenges. This procedure aims to restore metabolic activity and function in compromised cells through the introduction of healthy mitochondria, thereby enhancing the cellular energy production capacity and offering new strategies for the treatment of retinal degenerative diseases. Although mitochondrial transplantation presents operational and safety challenges that require further investigation, it has demonstrated potential for reviving the vitality of retinal neurons. This review offers a comprehensive examination of the principles and techniques underlying mitochondrial transplantation and its prospects for application in retinal degenerative diseases, while also delving into the associated technical and safety challenges, thereby providing references and insights for future research and treatment. |
format | Article |
id | doaj-art-46ddf343599c4fccb5b1816e2698a842 |
institution | Kabale University |
issn | 1673-5374 1876-7958 |
language | English |
publishDate | 2025-12-01 |
publisher | Wolters Kluwer Medknow Publications |
record_format | Article |
series | Neural Regeneration Research |
spelling | doaj-art-46ddf343599c4fccb5b1816e2698a8422025-02-06T09:58:38ZengWolters Kluwer Medknow PublicationsNeural Regeneration Research1673-53741876-79582025-12-0120123370338710.4103/NRR.NRR-D-24-00851Mitochondrial transplantation: a promising strategy for the treatment of retinal degenerative diseasesJing ChiBin FanYulin LiQing JiaoGuang-Yu LiThe retina, a crucial neural tissue, is responsible for transforming light signals into visual information, a process that necessitates a significant amount of energy. Mitochondria, the primary powerhouses of the cell, play an integral role in retinal physiology by fulfilling the high-energy requirements of photoreceptors and secondary neurons through oxidative phosphorylation. In a healthy state, mitochondria ensure proper visual function by facilitating efficient conversion and transduction of visual signals. However, in retinal degenerative diseases, mitochondrial dysfunction significantly contributes to disease progression, involving a decline in membrane potential, the occurrence of DNA mutations, increased oxidative stress, and imbalances in quality-control mechanisms. These abnormalities lead to an inadequate energy supply, the exacerbation of oxidative damage, and the activation of cell death pathways, ultimately resulting in neuronal injury and dysfunction in the retina. Mitochondrial transplantation has emerged as a promising strategy for addressing these challenges. This procedure aims to restore metabolic activity and function in compromised cells through the introduction of healthy mitochondria, thereby enhancing the cellular energy production capacity and offering new strategies for the treatment of retinal degenerative diseases. Although mitochondrial transplantation presents operational and safety challenges that require further investigation, it has demonstrated potential for reviving the vitality of retinal neurons. This review offers a comprehensive examination of the principles and techniques underlying mitochondrial transplantation and its prospects for application in retinal degenerative diseases, while also delving into the associated technical and safety challenges, thereby providing references and insights for future research and treatment.https://journals.lww.com/10.4103/NRR.NRR-D-24-00851age-related macular degenerationleber’s hereditary optic neuropathymitochondrial transfermitochondrial transplantationretinal degenerative diseases |
spellingShingle | Jing Chi Bin Fan Yulin Li Qing Jiao Guang-Yu Li Mitochondrial transplantation: a promising strategy for the treatment of retinal degenerative diseases Neural Regeneration Research age-related macular degeneration leber’s hereditary optic neuropathy mitochondrial transfer mitochondrial transplantation retinal degenerative diseases |
title | Mitochondrial transplantation: a promising strategy for the treatment of retinal degenerative diseases |
title_full | Mitochondrial transplantation: a promising strategy for the treatment of retinal degenerative diseases |
title_fullStr | Mitochondrial transplantation: a promising strategy for the treatment of retinal degenerative diseases |
title_full_unstemmed | Mitochondrial transplantation: a promising strategy for the treatment of retinal degenerative diseases |
title_short | Mitochondrial transplantation: a promising strategy for the treatment of retinal degenerative diseases |
title_sort | mitochondrial transplantation a promising strategy for the treatment of retinal degenerative diseases |
topic | age-related macular degeneration leber’s hereditary optic neuropathy mitochondrial transfer mitochondrial transplantation retinal degenerative diseases |
url | https://journals.lww.com/10.4103/NRR.NRR-D-24-00851 |
work_keys_str_mv | AT jingchi mitochondrialtransplantationapromisingstrategyforthetreatmentofretinaldegenerativediseases AT binfan mitochondrialtransplantationapromisingstrategyforthetreatmentofretinaldegenerativediseases AT yulinli mitochondrialtransplantationapromisingstrategyforthetreatmentofretinaldegenerativediseases AT qingjiao mitochondrialtransplantationapromisingstrategyforthetreatmentofretinaldegenerativediseases AT guangyuli mitochondrialtransplantationapromisingstrategyforthetreatmentofretinaldegenerativediseases |