Generalized Well-Posedness for Symmetric Vector Quasi-Equilibrium Problems
We introduce and study well-posedness in connection with the symmetric vector quasi-equilibrium problem, which unifies its Hadamard and Levitin-Polyak well-posedness. Using the nonlinear scalarization function, we give some sufficient conditions to guarantee the existence of well-posedness for the s...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2015-01-01
|
| Series: | Journal of Applied Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2015/108357 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We introduce and study well-posedness in connection with the symmetric vector quasi-equilibrium problem, which unifies its Hadamard and Levitin-Polyak well-posedness. Using the nonlinear scalarization function, we give some sufficient conditions to guarantee the existence of well-posedness for the symmetric vector quasi-equilibrium problem. |
|---|---|
| ISSN: | 1110-757X 1687-0042 |