Dynamic Simulations of Phase-Change Emulsions in Cooling Systems

The application of phase change material emulsions (PCMEs) in heating, ventilation, and air conditioning (HVAC) systems is considered to be a potential way of saving energy due to their relatively higher energy storage capacity compared with water. They are now widely used as a heat transfer media,...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuting Wang, Jingjing Shao, Jo Darkwa, Georgios Kokogiannakis
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/11/1873
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The application of phase change material emulsions (PCMEs) in heating, ventilation, and air conditioning (HVAC) systems is considered to be a potential way of saving energy due to their relatively higher energy storage capacity compared with water. They are now widely used as a heat transfer media, so they are able to reduce the flow rate whilst delivering the same amount of cooling energy. In order to evaluate the energy-saving potential of the integrated PCME air conditioning system, whole-building energy simulation was carried out with the building simulation code TRNSYS. Before simulating the whole system, a mathematical model for a PCME-integrated fan coil unit was first developed and validated. A phase change material emulsion called PCE-10 was used, and the TRNSYS simulation showed that the required volumetric flow rate of phase change material emulsions was 50% less than that of water when providing the same cooling effect, which could contribute to a 7% reduction in total energy consumption.
ISSN:2075-5309