Solid–Solid Interface Design for Hydrogen Production by Direct Seawater Electrolysis: Progress and Challenges
Using direct seawater electrolysis (DSE) for hydrogen production has garnered increasing scientific attention as a promising pathway toward sustainable energy solutions. Given the complex ionic environment of seawater, researchers have proposed a diverse range of strategies aimed at addressing the i...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Inorganics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-6740/13/6/183 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Using direct seawater electrolysis (DSE) for hydrogen production has garnered increasing scientific attention as a promising pathway toward sustainable energy solutions. Given the complex ionic environment of seawater, researchers have proposed a diverse range of strategies aimed at addressing the issue of enhancing the corrosion resistance of anodes, yet no optimal solution has been found so far. Among the emerging approaches, a design using multilayer electrode architecture offers notable advantages by introducing abundant active sites, diverse chemical environments, and robust physical structures. Crucially, these configurations enable the synergistic integration of distinct material properties across different layers, thereby enhancing both electrochemical activity and structural stability in harsh seawater environments. Despite these benefits, a limited understanding of the role played by solid–solid interfaces has hindered the rational design and practical application of such electrodes. This review focuses on the design principles and functional roles of solid–solid interfaces in multilayer anodes for the oxygen evolution reaction (OER) under DSE conditions. In addition, we systematically summarize and discuss the representative fabrication methods for constructing solid–solid interfaces in hierarchically structured electrodes. By screening recent advances in these techniques, we further highlight how engineered interfaces influence interfacial bonding, electron transfer, and mass transport during DSE processes, enhancing the intrinsic catalytic activity, as well as protecting the metallic electrode from corrosion. Finally, current challenges and future research directions to deepen the mechanistic understanding of interface phenomena are discussed, with the aim of accelerating the development of robust and scalable electrodes for direct seawater electrolysis. |
|---|---|
| ISSN: | 2304-6740 |