Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1 c from JWST NIRISS Transmission Spectra

Attempts to probe the atmospheres of rocky planets around M dwarfs present both promise and peril. While their favorable planet-to-star radius ratios enable searches for even thin secondary atmospheres, their high activity levels and high-energy outputs threaten atmosphere survival. Here we present...

Full description

Saved in:
Bibliographic Details
Main Authors: Michael Radica, Caroline Piaulet-Ghorayeb, Jake Taylor, Louis-Philippe Coulombe, Björn Benneke, Loic Albert, Étienne Artigau, Nicolas B. Cowan, René Doyon, David Lafrenière, Alexandrine L’Heureux, Olivia Lim
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal Letters
Subjects:
Online Access:https://doi.org/10.3847/2041-8213/ada381
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841542657049886720
author Michael Radica
Caroline Piaulet-Ghorayeb
Jake Taylor
Louis-Philippe Coulombe
Björn Benneke
Loic Albert
Étienne Artigau
Nicolas B. Cowan
René Doyon
David Lafrenière
Alexandrine L’Heureux
Olivia Lim
author_facet Michael Radica
Caroline Piaulet-Ghorayeb
Jake Taylor
Louis-Philippe Coulombe
Björn Benneke
Loic Albert
Étienne Artigau
Nicolas B. Cowan
René Doyon
David Lafrenière
Alexandrine L’Heureux
Olivia Lim
author_sort Michael Radica
collection DOAJ
description Attempts to probe the atmospheres of rocky planets around M dwarfs present both promise and peril. While their favorable planet-to-star radius ratios enable searches for even thin secondary atmospheres, their high activity levels and high-energy outputs threaten atmosphere survival. Here we present the 0.6–2.85 μ m transmission spectrum of the 1.1 R _⊕ ,  ∼ 340 K rocky planet TRAPPIST-1 c obtained over two JWST NIRISS/SOSS transit observations. Each of the two spectra displays 100–500 ppm signatures of stellar contamination. Despite being separated by 367 days, the retrieved spot and facula properties are consistent between the two visits, resulting in nearly identical transmission spectra. Jointly retrieving for stellar contamination and a planetary atmosphere reveals that our spectrum can rule out hydrogen-dominated,  ≲300×  solar metallicity atmospheres with effective surface pressures down to 10 mbar at the 3 σ level. For high mean molecular weight atmospheres, where O _2 or N _2 is the background gas, our spectrum disfavors partial pressures of more than  ∼10 mbar for H _2 O, CO, NH _3 , and CH _4 at the 2 σ level. Similarly, under the assumption of a 100% H _2 O, NH _3 , CO, or CH _4 atmosphere, our spectrum disfavors thick,  >1-bar atmospheres at the 2 σ level. These nondetections of spectral features are in line with predictions that even heavier, CO _2 -rich atmospheres would be efficiently lost on TRAPPIST-1 c given the cumulative high-energy irradiation experienced by the planet. Our results further stress the importance of robustly accounting for stellar contamination when analyzing JWST observations of exo-Earths around M dwarfs, as well as the need for high-fidelity stellar models to search for the potential signals of thin secondary atmospheres.
format Article
id doaj-art-469e1d15945d4cddbd4349dccf2408e7
institution Kabale University
issn 2041-8205
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal Letters
spelling doaj-art-469e1d15945d4cddbd4349dccf2408e72025-01-13T17:12:34ZengIOP PublishingThe Astrophysical Journal Letters2041-82052025-01-019791L510.3847/2041-8213/ada381Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1 c from JWST NIRISS Transmission SpectraMichael Radica0https://orcid.org/0000-0002-3328-1203Caroline Piaulet-Ghorayeb1https://orcid.org/0000-0002-2875-917XJake Taylor2https://orcid.org/0000-0003-4844-9838Louis-Philippe Coulombe3https://orcid.org/0000-0002-2195-735XBjörn Benneke4https://orcid.org/0000-0001-5578-1498Loic Albert5https://orcid.org/0000-0003-0475-9375Étienne Artigau6https://orcid.org/0000-0003-3506-5667Nicolas B. Cowan7https://orcid.org/0000-0001-6129-5699René Doyon8https://orcid.org/0000-0001-5485-4675David Lafrenière9https://orcid.org/0000-0002-6780-4252Alexandrine L’Heureux10https://orcid.org/0009-0005-6135-6769Olivia Lim11https://orcid.org/0000-0003-4676-0622Department of Astronomy & Astrophysics, University of Chicago , 5640 South Ellis Avenue, Chicago, IL 60637, USA ; radicamc@uchicago.edu; Institut Trottier de Recherche sur les Exoplanètes and Département de Physique, Université de Montréal , 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, CanadaDepartment of Astronomy & Astrophysics, University of Chicago , 5640 South Ellis Avenue, Chicago, IL 60637, USA ; radicamc@uchicago.edu; Institut Trottier de Recherche sur les Exoplanètes and Département de Physique, Université de Montréal , 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, CanadaDepartment of Physics, University of Oxford , Parks Rd., Oxford OX1 3PU, UKInstitut Trottier de Recherche sur les Exoplanètes and Département de Physique, Université de Montréal , 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, CanadaInstitut Trottier de Recherche sur les Exoplanètes and Département de Physique, Université de Montréal , 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, CanadaInstitut Trottier de Recherche sur les Exoplanètes and Département de Physique, Université de Montréal , 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, CanadaInstitut Trottier de Recherche sur les Exoplanètes and Département de Physique, Université de Montréal , 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; Observatoire du Mont-Mégantic, Université de Montréal , Montréal, QC H3C 3J7, CanadaDepartment of Physics, McGill University , 3600 rue University, Montréal, QC H3A 2T8, Canada; Department of Earth and Planetary Sciences, McGill University , 3600 rue University, Montréal, QC H3A 2T8, CanadaInstitut Trottier de Recherche sur les Exoplanètes and Département de Physique, Université de Montréal , 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; Observatoire du Mont-Mégantic, Université de Montréal , Montréal, QC H3C 3J7, CanadaInstitut Trottier de Recherche sur les Exoplanètes and Département de Physique, Université de Montréal , 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, CanadaInstitut Trottier de Recherche sur les Exoplanètes and Département de Physique, Université de Montréal , 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, CanadaInstitut Trottier de Recherche sur les Exoplanètes and Département de Physique, Université de Montréal , 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, CanadaAttempts to probe the atmospheres of rocky planets around M dwarfs present both promise and peril. While their favorable planet-to-star radius ratios enable searches for even thin secondary atmospheres, their high activity levels and high-energy outputs threaten atmosphere survival. Here we present the 0.6–2.85 μ m transmission spectrum of the 1.1 R _⊕ ,  ∼ 340 K rocky planet TRAPPIST-1 c obtained over two JWST NIRISS/SOSS transit observations. Each of the two spectra displays 100–500 ppm signatures of stellar contamination. Despite being separated by 367 days, the retrieved spot and facula properties are consistent between the two visits, resulting in nearly identical transmission spectra. Jointly retrieving for stellar contamination and a planetary atmosphere reveals that our spectrum can rule out hydrogen-dominated,  ≲300×  solar metallicity atmospheres with effective surface pressures down to 10 mbar at the 3 σ level. For high mean molecular weight atmospheres, where O _2 or N _2 is the background gas, our spectrum disfavors partial pressures of more than  ∼10 mbar for H _2 O, CO, NH _3 , and CH _4 at the 2 σ level. Similarly, under the assumption of a 100% H _2 O, NH _3 , CO, or CH _4 atmosphere, our spectrum disfavors thick,  >1-bar atmospheres at the 2 σ level. These nondetections of spectral features are in line with predictions that even heavier, CO _2 -rich atmospheres would be efficiently lost on TRAPPIST-1 c given the cumulative high-energy irradiation experienced by the planet. Our results further stress the importance of robustly accounting for stellar contamination when analyzing JWST observations of exo-Earths around M dwarfs, as well as the need for high-fidelity stellar models to search for the potential signals of thin secondary atmospheres.https://doi.org/10.3847/2041-8213/ada381Low mass starsExoplanet atmospheresExtrasolar rocky planetsPlanetary atmospheresExoplanets
spellingShingle Michael Radica
Caroline Piaulet-Ghorayeb
Jake Taylor
Louis-Philippe Coulombe
Björn Benneke
Loic Albert
Étienne Artigau
Nicolas B. Cowan
René Doyon
David Lafrenière
Alexandrine L’Heureux
Olivia Lim
Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1 c from JWST NIRISS Transmission Spectra
The Astrophysical Journal Letters
Low mass stars
Exoplanet atmospheres
Extrasolar rocky planets
Planetary atmospheres
Exoplanets
title Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1 c from JWST NIRISS Transmission Spectra
title_full Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1 c from JWST NIRISS Transmission Spectra
title_fullStr Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1 c from JWST NIRISS Transmission Spectra
title_full_unstemmed Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1 c from JWST NIRISS Transmission Spectra
title_short Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1 c from JWST NIRISS Transmission Spectra
title_sort promise and peril stellar contamination and strict limits on the atmosphere composition of trappist 1 c from jwst niriss transmission spectra
topic Low mass stars
Exoplanet atmospheres
Extrasolar rocky planets
Planetary atmospheres
Exoplanets
url https://doi.org/10.3847/2041-8213/ada381
work_keys_str_mv AT michaelradica promiseandperilstellarcontaminationandstrictlimitsontheatmospherecompositionoftrappist1cfromjwstnirisstransmissionspectra
AT carolinepiauletghorayeb promiseandperilstellarcontaminationandstrictlimitsontheatmospherecompositionoftrappist1cfromjwstnirisstransmissionspectra
AT jaketaylor promiseandperilstellarcontaminationandstrictlimitsontheatmospherecompositionoftrappist1cfromjwstnirisstransmissionspectra
AT louisphilippecoulombe promiseandperilstellarcontaminationandstrictlimitsontheatmospherecompositionoftrappist1cfromjwstnirisstransmissionspectra
AT bjornbenneke promiseandperilstellarcontaminationandstrictlimitsontheatmospherecompositionoftrappist1cfromjwstnirisstransmissionspectra
AT loicalbert promiseandperilstellarcontaminationandstrictlimitsontheatmospherecompositionoftrappist1cfromjwstnirisstransmissionspectra
AT etienneartigau promiseandperilstellarcontaminationandstrictlimitsontheatmospherecompositionoftrappist1cfromjwstnirisstransmissionspectra
AT nicolasbcowan promiseandperilstellarcontaminationandstrictlimitsontheatmospherecompositionoftrappist1cfromjwstnirisstransmissionspectra
AT renedoyon promiseandperilstellarcontaminationandstrictlimitsontheatmospherecompositionoftrappist1cfromjwstnirisstransmissionspectra
AT davidlafreniere promiseandperilstellarcontaminationandstrictlimitsontheatmospherecompositionoftrappist1cfromjwstnirisstransmissionspectra
AT alexandrinelheureux promiseandperilstellarcontaminationandstrictlimitsontheatmospherecompositionoftrappist1cfromjwstnirisstransmissionspectra
AT olivialim promiseandperilstellarcontaminationandstrictlimitsontheatmospherecompositionoftrappist1cfromjwstnirisstransmissionspectra