Extracting chemical food safety hazards from the scientific literature automatically using large language models
The number of scientific articles published in the domain of food safety has consistently been increasing over the last few decades. It has therefore become unfeasible for food safety experts to read all relevant literature related to food safety and the occurrence of hazards in the food chain. Howe...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | Applied Food Research |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2772502224002890 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850102114962898944 |
|---|---|
| author | Neris Özen Wenjuan Mu Esther D. van Asselt Leonieke M. van den Bulk |
| author_facet | Neris Özen Wenjuan Mu Esther D. van Asselt Leonieke M. van den Bulk |
| author_sort | Neris Özen |
| collection | DOAJ |
| description | The number of scientific articles published in the domain of food safety has consistently been increasing over the last few decades. It has therefore become unfeasible for food safety experts to read all relevant literature related to food safety and the occurrence of hazards in the food chain. However, it is important that food safety experts are aware of the newest findings and can access this information in an easy and concise way. In this study, an approach is presented to automate the extraction of chemical hazards from the scientific literature through large language models. The large language model was used out-of-the-box and applied on scientific abstracts; no extra training of the models or a large computing cluster was required. Three different styles of prompting the model were tested to assess which was the most optimal for the task at hand. The prompts were optimized with two validation foods (leafy greens and shellfish) and the final performance of the best prompt was evaluated using three test foods (dairy, maize and salmon). The specific wording of the prompt was found to have a considerable effect on the results. A prompt breaking the task down into smaller steps performed best overall. This prompt reached an average accuracy of 93 % and contained many chemical contaminants already included in food monitoring programs, validating the successful retrieval of relevant hazards for the food safety domain. The results showcase how valuable large language models can be for the task of automatic information extraction from the scientific literature. |
| format | Article |
| id | doaj-art-463df6847df2461ebfb0d89afd0af901 |
| institution | DOAJ |
| issn | 2772-5022 |
| language | English |
| publishDate | 2025-06-01 |
| publisher | Elsevier |
| record_format | Article |
| series | Applied Food Research |
| spelling | doaj-art-463df6847df2461ebfb0d89afd0af9012025-08-20T02:39:50ZengElsevierApplied Food Research2772-50222025-06-015110067910.1016/j.afres.2024.100679Extracting chemical food safety hazards from the scientific literature automatically using large language modelsNeris Özen0Wenjuan Mu1Esther D. van Asselt2Leonieke M. van den Bulk3Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The NetherlandsWageningen Food Safety Research, Wageningen University & Research, Wageningen, The NetherlandsWageningen Food Safety Research, Wageningen University & Research, Wageningen, The NetherlandsCorresponding author.; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The NetherlandsThe number of scientific articles published in the domain of food safety has consistently been increasing over the last few decades. It has therefore become unfeasible for food safety experts to read all relevant literature related to food safety and the occurrence of hazards in the food chain. However, it is important that food safety experts are aware of the newest findings and can access this information in an easy and concise way. In this study, an approach is presented to automate the extraction of chemical hazards from the scientific literature through large language models. The large language model was used out-of-the-box and applied on scientific abstracts; no extra training of the models or a large computing cluster was required. Three different styles of prompting the model were tested to assess which was the most optimal for the task at hand. The prompts were optimized with two validation foods (leafy greens and shellfish) and the final performance of the best prompt was evaluated using three test foods (dairy, maize and salmon). The specific wording of the prompt was found to have a considerable effect on the results. A prompt breaking the task down into smaller steps performed best overall. This prompt reached an average accuracy of 93 % and contained many chemical contaminants already included in food monitoring programs, validating the successful retrieval of relevant hazards for the food safety domain. The results showcase how valuable large language models can be for the task of automatic information extraction from the scientific literature.http://www.sciencedirect.com/science/article/pii/S2772502224002890Chemical contaminationFood safetyInformation extractionPrompt engineeringNatural language processingArtificial intelligence |
| spellingShingle | Neris Özen Wenjuan Mu Esther D. van Asselt Leonieke M. van den Bulk Extracting chemical food safety hazards from the scientific literature automatically using large language models Applied Food Research Chemical contamination Food safety Information extraction Prompt engineering Natural language processing Artificial intelligence |
| title | Extracting chemical food safety hazards from the scientific literature automatically using large language models |
| title_full | Extracting chemical food safety hazards from the scientific literature automatically using large language models |
| title_fullStr | Extracting chemical food safety hazards from the scientific literature automatically using large language models |
| title_full_unstemmed | Extracting chemical food safety hazards from the scientific literature automatically using large language models |
| title_short | Extracting chemical food safety hazards from the scientific literature automatically using large language models |
| title_sort | extracting chemical food safety hazards from the scientific literature automatically using large language models |
| topic | Chemical contamination Food safety Information extraction Prompt engineering Natural language processing Artificial intelligence |
| url | http://www.sciencedirect.com/science/article/pii/S2772502224002890 |
| work_keys_str_mv | AT nerisozen extractingchemicalfoodsafetyhazardsfromthescientificliteratureautomaticallyusinglargelanguagemodels AT wenjuanmu extractingchemicalfoodsafetyhazardsfromthescientificliteratureautomaticallyusinglargelanguagemodels AT estherdvanasselt extractingchemicalfoodsafetyhazardsfromthescientificliteratureautomaticallyusinglargelanguagemodels AT leoniekemvandenbulk extractingchemicalfoodsafetyhazardsfromthescientificliteratureautomaticallyusinglargelanguagemodels |