A Novel Improved Dung Beetle Optimization Algorithm for Collaborative 3D Path Planning of UAVs

In this study, we propose a novel improved Dung Beetle Optimizer called Environment-aware Chaotic Force-field Dung Beetle Optimizer (ECFDBO). To address DBO’s existing tendency toward premature convergence and insufficient precision in high-dimensional, complex search spaces, ECFDBO integrates three...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaojun Zheng, Rundong Liu, Siyang Li
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Biomimetics
Subjects:
Online Access:https://www.mdpi.com/2313-7673/10/7/420
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we propose a novel improved Dung Beetle Optimizer called Environment-aware Chaotic Force-field Dung Beetle Optimizer (ECFDBO). To address DBO’s existing tendency toward premature convergence and insufficient precision in high-dimensional, complex search spaces, ECFDBO integrates three key improvements: a chaotic perturbation-based nonlinear contraction strategy, an intelligent boundary-handling mechanism, and a dynamic attraction–repulsion force-field mutation. These improvements reinforce both the algorithm’s global exploration capability and its local exploitation accuracy. We conducted 30 independent runs of ECFDBO on the CEC2017 benchmark suite. Compared with seven classical and novel metaheuristic algorithms, ECFDBO achieved statistically significant improvements in multiple performance metrics. Moreover, by varying problem dimensionality, we demonstrated its robust global optimization capability for increasingly challenging tasks. We further conducted the Wilcoxon and Friedman tests to assess the significance of performance differences of the algorithms and to establish an overall ranking. Finally, ECFDBO was applied to a 3D path planning simulation in UAVs for safe path planning in complex environments. Against both the Dung Beetle Optimizer and a multi-strategy DBO (GODBO) algorithm, ECFDBO met the global optimality requirements for cooperative UAV planning and showed strong potential for high-dimensional global optimization applications.
ISSN:2313-7673