Selective manipulation of excitatory and inhibitory neurons in top-down and bottom-up visual pathways using ultrasound stimulation

Introduction: Techniques for precise manipulation of neurons in specific neural pathways are crucial for excitatory/inhibitory (E/I) balance and investigation of complex brain circuits. Low-intensity focused ultrasound stimulation (LIFUS) has emerged as a promising tool for noninvasive deep-brain ta...

Full description

Saved in:
Bibliographic Details
Main Authors: Yehhyun Jo, Xiaojia Liang, Hong Hanh Nguyen, Yeonseo Choi, Minji Choi, Ga-Eun Bae, Yakdol Cho, Jiwan Woo, Hyunjoo Jenny Lee
Format: Article
Language:English
Published: Elsevier 2025-05-01
Series:Brain Stimulation
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1935861X25000890
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Introduction: Techniques for precise manipulation of neurons in specific neural pathways are crucial for excitatory/inhibitory (E/I) balance and investigation of complex brain circuits. Low-intensity focused ultrasound stimulation (LIFUS) has emerged as a promising tool for noninvasive deep-brain targeting at high spatial resolution. However, there is a lack of studies that extensively investigate the modulation of top-down and bottom-up corticothalamic circuits via selective manipulation of excitatory and inhibitory neurons. Here, a comprehensive methodology using electrophysiological recording and c-Fos staining is employed to demonstrate pulse repetition frequency (PRF)-dependent E/I selectivity of ultrasound stimulation in the top-down and bottom-up corticothalamic pathways of the visual circuit in rodents. Materials and methods: Ultrasound stimulation at various PRFs is applied to either the lateral posterior nucleus of the thalamus (LP) or the primary visual cortex (V1), and multi-channel single-unit activity is recorded from the V1 using a silicon probe. Results and conclusion: Our results demonstrate that high-frequency PRFs, particularly at 3 kHz and 1 kHz, are effective at activating the bidirectional corticothalamic visual pathway. In addition, brain region-specific PRFs modulate E/I cortical signals, corticothalamic projections, and synaptic neurotransmission, which is imperative for circuit-specific applications and behavioral studies.
ISSN:1935-861X