Complex Riemannian Spacetime and Singularity-Free Black Holes and Cosmology
An approach is presented to address singularities in general relativity using a complex Riemannian spacetime extension. We demonstrate how this method can be applied to both black hole and cosmological singularities, specifically focusing on the Schwarzschild and Kerr black holes and the Friedmann–L...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/14/6/459 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | An approach is presented to address singularities in general relativity using a complex Riemannian spacetime extension. We demonstrate how this method can be applied to both black hole and cosmological singularities, specifically focusing on the Schwarzschild and Kerr black holes and the Friedmann–Lemaître–Robertson–Walker (FLRW) Big Bang cosmology. By extending the relevant coordinates into the complex plane and carefully choosing integration contours, we show that it is possible to regularize these singularities, resulting in physically meaningful, singularity-free solutions when projected back onto real spacetime. The removal of the singularity at the Big Bang allows for a bounce cosmology. The approach offers a potential bridge between classical general relativity and quantum gravity effects, suggesting a way to resolve longstanding issues in gravitational physics without requiring a full theory of quantum gravity. |
|---|---|
| ISSN: | 2075-1680 |