Biofuel Production in Oleic Acid Hydrodeoxygenation Utilizing a Ni/Tire Rubber Carbon Catalyst and Predicting of n-Alkanes with Box–Behnken and Artificial Neural Networks

Oleic acid is a valuable molecule for biofuel production, as it is found in high proportions in vegetable oils. When used, oleic acid undergoes hydrodeoxygenation reactions and produces alkanes within the diesel range. These alkanes are free of oxygenated compounds and have molecular structures simi...

Full description

Saved in:
Bibliographic Details
Main Authors: Luis A. Sánchez-Olmos, Manuel Sánchez-Cárdenas, Fernando Trejo, Martín Montes Rivera, Ernesto Olvera-Gonzalez, Benito Alexis Hernández Guerrero
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/17/22/5717
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850217648107814912
author Luis A. Sánchez-Olmos
Manuel Sánchez-Cárdenas
Fernando Trejo
Martín Montes Rivera
Ernesto Olvera-Gonzalez
Benito Alexis Hernández Guerrero
author_facet Luis A. Sánchez-Olmos
Manuel Sánchez-Cárdenas
Fernando Trejo
Martín Montes Rivera
Ernesto Olvera-Gonzalez
Benito Alexis Hernández Guerrero
author_sort Luis A. Sánchez-Olmos
collection DOAJ
description Oleic acid is a valuable molecule for biofuel production, as it is found in high proportions in vegetable oils. When used, oleic acid undergoes hydrodeoxygenation reactions and produces alkanes within the diesel range. These alkanes are free of oxygenated compounds and have molecular structures similar to petrodiesel. Our research introduces a novel approach incorporating oleic acid into the hydrodeoxygenation process of Ni/Tire Rubber Carbon (Ni/C<sub>TR</sub>) catalysts. These catalysts produced renewable biofuels with properties similar to diesel, particularly a high concentration of n-C<sub>17</sub> alkanes. Moreover, our Ni/C<sub>TR</sub> catalyst produces n-C<sub>18</sub> alkanes, but the generation of n-C<sub>18</sub> alkanes typically requires more complex catalysts. Our procedure achieved 74.74% of n-C<sub>17</sub> alkanes and 2.28% of n-C<sub>18</sub> alkanes. We used Box–Behnken and artificial neural networks (ANNs) to find the optimal configuration based on the predicted data. We developed a dataset with pressure, temperature, metal content, reaction time, and catalyst composition variables as inputs. The output variables are the n-C<sub>17</sub> and n-C<sub>18</sub> alkanes obtained. ANN602020 was our best model for obtaining the peak response; it accurately forecasted the n-C<sub>17</sub> and n-C<sub>18</sub> generation with R2 scores of 0.9903 and 0.9525, respectively, resulting in an MSE of 0.0014, MAE of 0.02773, and MAPE of 2.03979%. The combined R<sup>2</sup> score for both alkanes was 0.97139.
format Article
id doaj-art-44f66fd9a09d4c16bbb97781fc0c3af2
institution OA Journals
issn 1996-1073
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj-art-44f66fd9a09d4c16bbb97781fc0c3af22025-08-20T02:08:00ZengMDPI AGEnergies1996-10732024-11-011722571710.3390/en17225717Biofuel Production in Oleic Acid Hydrodeoxygenation Utilizing a Ni/Tire Rubber Carbon Catalyst and Predicting of n-Alkanes with Box–Behnken and Artificial Neural NetworksLuis A. Sánchez-Olmos0Manuel Sánchez-Cárdenas1Fernando Trejo2Martín Montes Rivera3Ernesto Olvera-Gonzalez4Benito Alexis Hernández Guerrero5CICATA-Legaria, Instituto Politécnico Nacional, Legaria 694, Col. Irrigación, Ciudad de México 11500, MexicoCICATA-Legaria, Instituto Politécnico Nacional, Legaria 694, Col. Irrigación, Ciudad de México 11500, MexicoCICATA-Legaria, Instituto Politécnico Nacional, Legaria 694, Col. Irrigación, Ciudad de México 11500, MexicoDirección de Posgrados e Investigación, Universidad Politécnica de Aguascalientes, Calle Paseo San Gerardo 207, Aguascalientes 20342, MexicoLaboratorio de Iluminación Artificial, Tecnológico Nacional de México, IT de Pabellón de Arteaga, Carretera a la Estación de Rincón Km. 1, Aguascalientes 20670, MexicoCICATA-Legaria, Instituto Politécnico Nacional, Legaria 694, Col. Irrigación, Ciudad de México 11500, MexicoOleic acid is a valuable molecule for biofuel production, as it is found in high proportions in vegetable oils. When used, oleic acid undergoes hydrodeoxygenation reactions and produces alkanes within the diesel range. These alkanes are free of oxygenated compounds and have molecular structures similar to petrodiesel. Our research introduces a novel approach incorporating oleic acid into the hydrodeoxygenation process of Ni/Tire Rubber Carbon (Ni/C<sub>TR</sub>) catalysts. These catalysts produced renewable biofuels with properties similar to diesel, particularly a high concentration of n-C<sub>17</sub> alkanes. Moreover, our Ni/C<sub>TR</sub> catalyst produces n-C<sub>18</sub> alkanes, but the generation of n-C<sub>18</sub> alkanes typically requires more complex catalysts. Our procedure achieved 74.74% of n-C<sub>17</sub> alkanes and 2.28% of n-C<sub>18</sub> alkanes. We used Box–Behnken and artificial neural networks (ANNs) to find the optimal configuration based on the predicted data. We developed a dataset with pressure, temperature, metal content, reaction time, and catalyst composition variables as inputs. The output variables are the n-C<sub>17</sub> and n-C<sub>18</sub> alkanes obtained. ANN602020 was our best model for obtaining the peak response; it accurately forecasted the n-C<sub>17</sub> and n-C<sub>18</sub> generation with R2 scores of 0.9903 and 0.9525, respectively, resulting in an MSE of 0.0014, MAE of 0.02773, and MAPE of 2.03979%. The combined R<sup>2</sup> score for both alkanes was 0.97139.https://www.mdpi.com/1996-1073/17/22/5717renewable biofuelsNi/Tire Rubber Carbonhydrodeoxygenationartificial neural networksBox–Behnken
spellingShingle Luis A. Sánchez-Olmos
Manuel Sánchez-Cárdenas
Fernando Trejo
Martín Montes Rivera
Ernesto Olvera-Gonzalez
Benito Alexis Hernández Guerrero
Biofuel Production in Oleic Acid Hydrodeoxygenation Utilizing a Ni/Tire Rubber Carbon Catalyst and Predicting of n-Alkanes with Box–Behnken and Artificial Neural Networks
Energies
renewable biofuels
Ni/Tire Rubber Carbon
hydrodeoxygenation
artificial neural networks
Box–Behnken
title Biofuel Production in Oleic Acid Hydrodeoxygenation Utilizing a Ni/Tire Rubber Carbon Catalyst and Predicting of n-Alkanes with Box–Behnken and Artificial Neural Networks
title_full Biofuel Production in Oleic Acid Hydrodeoxygenation Utilizing a Ni/Tire Rubber Carbon Catalyst and Predicting of n-Alkanes with Box–Behnken and Artificial Neural Networks
title_fullStr Biofuel Production in Oleic Acid Hydrodeoxygenation Utilizing a Ni/Tire Rubber Carbon Catalyst and Predicting of n-Alkanes with Box–Behnken and Artificial Neural Networks
title_full_unstemmed Biofuel Production in Oleic Acid Hydrodeoxygenation Utilizing a Ni/Tire Rubber Carbon Catalyst and Predicting of n-Alkanes with Box–Behnken and Artificial Neural Networks
title_short Biofuel Production in Oleic Acid Hydrodeoxygenation Utilizing a Ni/Tire Rubber Carbon Catalyst and Predicting of n-Alkanes with Box–Behnken and Artificial Neural Networks
title_sort biofuel production in oleic acid hydrodeoxygenation utilizing a ni tire rubber carbon catalyst and predicting of n alkanes with box behnken and artificial neural networks
topic renewable biofuels
Ni/Tire Rubber Carbon
hydrodeoxygenation
artificial neural networks
Box–Behnken
url https://www.mdpi.com/1996-1073/17/22/5717
work_keys_str_mv AT luisasanchezolmos biofuelproductioninoleicacidhydrodeoxygenationutilizinganitirerubbercarboncatalystandpredictingofnalkaneswithboxbehnkenandartificialneuralnetworks
AT manuelsanchezcardenas biofuelproductioninoleicacidhydrodeoxygenationutilizinganitirerubbercarboncatalystandpredictingofnalkaneswithboxbehnkenandartificialneuralnetworks
AT fernandotrejo biofuelproductioninoleicacidhydrodeoxygenationutilizinganitirerubbercarboncatalystandpredictingofnalkaneswithboxbehnkenandartificialneuralnetworks
AT martinmontesrivera biofuelproductioninoleicacidhydrodeoxygenationutilizinganitirerubbercarboncatalystandpredictingofnalkaneswithboxbehnkenandartificialneuralnetworks
AT ernestoolveragonzalez biofuelproductioninoleicacidhydrodeoxygenationutilizinganitirerubbercarboncatalystandpredictingofnalkaneswithboxbehnkenandartificialneuralnetworks
AT benitoalexishernandezguerrero biofuelproductioninoleicacidhydrodeoxygenationutilizinganitirerubbercarboncatalystandpredictingofnalkaneswithboxbehnkenandartificialneuralnetworks